
China Communications • February 2019 177

using regular expressions. To perform match-
ing, regular expressions are compiled into
either NFA (Nondeterministic Finite Automa-
ton) or DFA (Deterministic Finite Automaton)
[1]. Though NFA has a more compact data
structure than DFA, the nondeterministic state
transitions would significantly slow down the
performance of NFA in the worst case. On the
contrary, DFA only needs one state transition
for each input character. As a result, DFA is
very fast and becomes the preferred choice for
deep inspection.

However, the outstanding performance of
DFA comes at the price of huge memory con-
sumption and long pre-processing time. With
the rapid growth of the Internet, both of the
network bandwidth and the number of deep
inspection rules have been increasing dramati-
cally in the past decades. When handling with
a large number of regular expressions, the size
of DFA usually explodes exponentially, lead-
ing to huge memory consumption. Worse still,
the enforcement of deep inspection rules is
becoming more frequent than before because
the network is getting more and more dynamic
along with the fast development of SDN (Soft-
ware Defined Network) and NFV (Network
Function Virtualization). In Cisco’s email
security appliance, the rules are updated every

Abstract: Regular expression matching is
playing an important role in deep inspection.
The rapid development of SDN and NFV
makes the network more dynamic, bringing
serious challenges to traditional deep inspec-
tion matching engines. However, state-of-the-
art matching methods often require a signifi-
cant amount of pre-processing time and hence
are not suitable for this fast updating scenario.
In this paper, a novel matching engine called
BFA is proposed to achieve high-speed regular
expression matching with fast pre-processing.
Experiments demonstrate that BFA obtains 5
to 20 times more update abilities compared to
existing regular expression matching methods,
and scales well on multi-core platforms.
Keywords: deep inspection; finite automaton;
regular expression matching; pre-processing

I. INTRODUCTION

Deep inspection is one of the most fundamen-
tal techniques in various network functional-
ities, including traffic identification, intrusion
detection, content-based charge, data loss pre-
vention, etc. Nowadays, regular expressions
are playing an important role in the implemen-
tation of deep inspection for their powerful ex-
pressiveness, and almost all rules are written

Received: Jan. 21, 2018
Revised: May 3, 2018
Editor: Luoyi Fu

High Speed Regular Expression Matching Engine with
Fast Pre-Processing
Zhe Fu1,2, Jun Li2,3

1 Department of Automation, Tsinghua University, Beijing 100084, China
2 Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
3 Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China

COMMUNICATIONS THEORIES & SYSTEMS

China Communications • February 2019178

spam email filtering, etc.), bandwidth man-
agement (QoS guarantees, bandwidth pricing,
etc.), user profiling (differentiation charge, ad
injection, etc.) and so forth. The key technol-
ogy of deep inspection is pattern matching,
which scans the payload of network packets
against a set of predefined rules.

In early days, the deep inspection rules
were written in exact strings. Many string
matching algorithms have been proposed, in-
cluding Knuth-Morris-Pratt (KMP) [4], Boy-
er-Moore (BM) [5] for single pattern matching
and Aho-Corasick (AC) [6], Wu-Manber
(WM) [7] for multiple pattern matching. Over
time, the patterns are getting more and more
complicated, therefore exact strings cannot
conveniently characterize the patterns for deep
inspection anymore. Regular expression was
first proposed in [8], and has become the first
choice to describe the patterns for deep inspec-
tion due to its powerful ability of expression.
The famous open-source network intrusion de-
tection system Snort [9] has already employed
more than 27,000 signatures defined by regu-
lar expressions.

NFA and DFA are two of the most pop-
ular methods to perform regular expression
matching, and they are both 5-tuples {Q, Σ, δ,
q0, q f}. Q and Σ represent a finite set of states
and a finite set of input characters respectively.
q0 denotes the start states, while q f denotes the
accept states. The only difference is the transi-
tion function δ. In DFA, δ only takes one state
and returns a single state for an input symbol,
while in NFA, δ may return empty, one state
or multiple states. The non-deterministic tran-
sitions slow down the speed of NFA seriously
in worst cases and restrict its applications in
deep inspection. Therefore, almost all match-
ing engines rely on DFA to match regular ex-
pressions for high-speed deep inspection.

However, the high matching speed of DFA
brings the following two drawbacks. First,
with the increase of number and complexity of
regular expressions, the size of corresponding
DFA expands exponentially, which is called
state explosion in DFA. Second, the construc-

3 to 5 minutes to provide an up-to-date threat
defence capability [2]. In [3], the authors also
demonstrate that the update performance is
one of the most crucial challenges for regular
expression matching because the deep inspec-
tion system must react quickly to the attack
characteristics that are changed rapidly. The
significant amount of pre-processing time
makes DFA and DFA based matching engines
hard to meet the pace of rule update in prac-
tice.

In this paper, we propose BFA (Bit-based
Finite Automaton), an update-friendly regular
expression matching engine for deep inspec-
tion. Instead of conventional state transitions
in NFA or DFA, BFA executes Boolean matrix
multiplications to perform regular expression
matching. In addition, some optimization
methods are put forward for BFA to further
accelerate the matching speed and reduce
the memory consumption. We also propose
a new criterion to measure the update abili-
ties of different regular expression matching
engines. Evaluations demonstrate that BFA
achieves fast matching speed in a very short
period of pre-processing time, about 5 to 20
times improvement on average compared to
state-of-the-art matching methods. BFA also
scales well and could get 3 to 4 times further
improvement on a commodity multi-core plat-
form.

The rest of the paper is organized as fol-
lows. In Section II, we introduce the back-
ground of regular expression matching. In
Section III, the design and implementation of
BFA are proposed. Further optimizations are
described in Section IV. In Section V, several
experiments are conducted to evaluate the per-
formance of BFA and other matching engines.
A conclusion is drawn in Section VI.

II. BACKGROUND

Deep inspection, as its name indicates, is to
inspect the packet deeply, analyse the payload
and make the appropriate decisions according
to the inspection rules. Deep inspection is
widely used in network security (anti-virus,

In this paper, a nov-
el matching engine
called BFA is proposed
to achieve high-speed
regular express ion
matching with fast
pre-processing.

China Communications • February 2019 179

GPU memory also limits the size and com-
plexity of regular expression rulesets.

There are also some proposals that paral-
lelize regular expression matching on multi-
core platform. Speculation based methods [21]
need to guess the start DFA state of each data
block, but the frequent rematch will degrade
the matching performance. Enumeration based
methods [22] compute all the state transitions
from every possible DFA state, whose com-
putation overhead is quite huge when DFA is
large. ParaRegex [23] takes advantage of the
state aggregation phenomenon during DFA
traversals and reduces the overhead of states
enumeration. Nevertheless, this type of work
also relies on the construction of DFA.

None of the previous work described above
addresses the problem of regular expression
pre-processing in deep inspection. Most
studies require even more pre-processing
time compared to the original NFA or DFA
methods. As the network is becoming more
dynamic and flexible, so does the need for a
high-speed regular matching engine with fast
pre-processing.

III. DESIGN AND IMPLEMENTATION

3.1 Overview

NFA has two advantages that are suitable for
the frequently updating scenarios: fast pre-pro-
cessing time and relatively low memory con-
sumption. However, the poor matching perfor-
mance of NFA, which is attributed to uncertain
active states and memory accesses, severely
limits its applications in deep inspection. To

tion of DFA usually takes a significant amount
of time since the construction from an NFA
to an equivalent DFA needs to explore all the
possible active states in the NFA through the
subset construction algorithm [10].

Until now, many of the research efforts are
focusing only on reducing the memory con-
sumption of DFA. D2FA [11] omits the equiv-
alent transitions among different states and
adds a default transition in order to compress
the redundant state transitions. Hybrid-FA [12]
constructs a hybrid structure with a head DFA
followed by multiple tail NFAs. OD2FA [13]
merges the DFA states deriving from the same
NFA state into a super state to further decrease
the number of DFA states. TFA [14] puts
forward tunable finite automata to achieve a
better balance between memory bandwidth
and space. All these researches have to further
analyse the structure of the built DFA, thus
they need more pre-processing time and can-
not handle large or complex regular expression
rulesets.

In [15-16], the authors proposed regular
expression grouping methods that group the
rules into several subsets and construct the
DFA for each group individually to avoid state
explosion when handling with a large scale
of regular expressions. The shortcoming of
this kind of work is that in deep inspection,
a stream have to be matched with all of the
DFAs to obtain the final matching result.
This will decrease the matching performance
linearly as the number of groups increasing.
What’s more, the grouping methods cannot
solve the DFA state explosion caused by single
regular expression.

Hardware platforms are also widely used to
accelerate regular expression matching. FPGA
based methods [17-18] have advantages in
pipeline and parallelism; however, the small
size of on-chip memories limits the practical
deployment of large-scale rulesets. Besides,
the synthesis, implementation, and place and
route procedures of FPGA design are also
quite time-consuming. GPU based methods
[19-20] make full use of the high memory
bandwidth and massive execution units, but Fig. 1. Example of BFA of regular expression “ab.*cd”

(a) (b) (c) (d)

1 2
a

3
b c d

4
**

0ab.*cd

RE:

BFA:

NFA:

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

(0)
(1)
(2)
(3)
(4)

China Communications • February 2019180

tial states and v f denotes a set of accept states.
Given a previously built NFA, the corre-

sponding BFA is constructed according to Al-
gorithm 1. Assuming that there are N states in
an NFA and the size of the alphabet is Σ , the

transition table B of BFA is made up of N × Σ
bit vectors with the length of N. Each bit in the
vector indicates the status of the corresponding
state, i.e., whether this state is active or not.
More precisely, in B(,)i k , a 1×N bit vector
which stands for the state i and input character
k, if the jth bit of this vector is 1, it denotes that
if the input character is k and meanwhile the
ith state of an NFA is active, then state j will be
activated.

Figure 1 shows an intuitive example of
the BFA constructed from a simple regular
expression rule “ab.*cd”. In this instance, the
corresponding NFA has 5 states, and the size
of the alphabet is 4, so there are 5 4 20× = bit
vectors in the transition table B, and each vec-
tor has 5 bits. Taking B(2,c) (i.e., [0 0 1 1 0])
as an example, if the input character is c, and
meanwhile state 2 is active, then state 2 and 3
will be activated after reading character c. Fol-
lowing the steps in Algorithm 1, it is also easy
to obtain that the start state vector v0= [1 0 0
0 0] and the accept state vector v f= [0 0 0 0 1]
for this example.

The procedure of BFA construction only
requires a one-time full traversal of the NFA
that is previously built, so the pre-processing
procedure is much easier and faster than DFA
and other DFA based methods.

3.3 State transitions in BFA

After constructing BFA in the form of bits, the
state transitions could be further transformed
into a Boolean Matrix Multiplication (BMM)
between a bit vector and a bit matrix. Addi-
tionally, a bit vector vi with the length of N is
used to record the active states after reading i
input characters. If the next input character is
k, then the kth column of the transition table B
is picked out, denoted as B(:,)k . B(:,)k is an
N N× bit matrix, which will be multiplied by

overcome the shortcomings of NFA, BFA is
designed to accelerate the state transitions of
NFA. To implement BFA, firstly an NFA is
generated from the regular expression ruleset
via the Thompson's construction algorithm [1].
Then each state and each transition in the NFA
are encoded into a bit vector. For every input
character, the state traversal procedure turns
into a Boolean multiplication between a vector
and a matrix, which could be speeded up by
CPU instruction level optimizations. Besides,
due to the sparsity in bit vectors and bit matri-
ces, several bitmap compression methods can
be leveraged to efficiently reduce the memory
consumption of BFA. Next, more details about
BFA design and implementation will be given.

3.2 BFA construction

BFA extends the 5-tuple definition of NFA and
DFA, by introducing bit vectors to encode the
states in automata. Formally, a BFA is defined
as a 5-tuple {Q, Σ, B, v0, v f}. The first two
terms are the same as those in traditional NFA.
The transition table B is defined as a function
to calculate the currently active states in BFA.
Finally, the bit vector v0 denotes the set of ini-

Algorithm 1. BFA construction.

 Input: NFA N ={Q, ∆, ∆, q0, qf}
 Output: BFA B ={Q, Σ, B, v0, vf}
1 // transition table initialization
2 B ← 0
3 foreach character k ∈Σ do
4 foreach i, j ∈ state Q do
5 if state i and j has a transition with label k then
6 B(i,k)[j] ← 1
7 end
8 end
9 end
10 // start state vector initialization
11 v0 ← 0
12 foreach state j ∈ state q0 do
13 v0[j] ← 1
14 end
15 // accept state vector initialization
16 vf ← 0
17 foreach state j ∈ state qf do
18 vf[j]←1
19 end

China Communications • February 2019 181

BFA on multi cores does not require extra
pre-processing time, but would add some
additional computational overhead since the
multiplication of two bit matrices is more
complex than that between a bit vector and a
bit matrix. After all cores complete the bit ma-
trix multiplication, the results of each core will
be joined with the start state vector v0 in order
to get the final state vector vn. Line 9 to Line
12 in Algorithm 2 illustrate the related steps.

IV. OPTIMIZATIONS

Although BMM is simpler than traditional
matrix multiplication [24], there is still a great
potential to accelerate it using instruction level
optimizations. The multiplication between the
bit vector vi and the bit matrix B(:,)k can be
simplified as bitwise OR operations between vi
and multiple bit vectors from B(:,)k . Besides,
the process to decide whether the currently
active states are accept states or not is actually
a bitwise AND operation between vi and the
accept state vector v f.

Algorithm 3 shows the procedure of opti-
mized state transitions in BFA. In Line 1, the
function FindBitPosition() returns the posi-
tions of 1 in the bit vector . A brute force way
is to check whether each bit is 1 or 0 from the

the 1×N bit vector vi. We iteratively compute
state transitions in BFA as below:
v vi+1 i

(1) (1) ()× × ×N N N N[] ([] (:,) [,])j m k m j= ∨ ∧
m

B (1)

In formula (1), m N∈[1,]. vi[]m denotes
the mth bit in the vector vi, and B(:,)[,]k m j
denotes the mth row and jth column of the bit
matrix B(:,)k . In figure 1, suppose vi= [1 0 1 0
0], which means the first and third state are ac-
tive. Assuming that the input character is c, the
state transitions in BFA are obtained by formu-
la (2). The result vi+1= [1 0 1 1 0] indicates that
after reading c, the first state, the third state,
and the fourth state will be activated.

[1 0 1 0 0

= [1 0 1 1 0

]×

1 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0

]

 (2)

To determine whether a match happens or
not, vi is intersected by the accept state vector
v f, i.e. v vi f∧ . In the example of figure 1, the
intersection of vi+1 and v f equals [0 0 0 0 0].
The all-zero result means no match is found
at this stage. Otherwise, the non-zero result
indicates at least one regular expression is
matched.

3.4 Multi-core scaling

The data-parallelization of NFA or DFA on
multi-core platform is extremely hard because
of the strong dependencies and unpredictable
memory accesses during state transitions.
In recent years, several methods have been
proposed to parallelize DFA or DFA based
methods and try to decrease the overhead as
much as possible [21-23]. However, all these
approaches have to build the DFA first, which
needs plenty of pre-processing time and hence
not suitable for the frequently update of rule-
sets in deep inspection.

In BFA, the state transitions are actually
a series of BMM between bit vectors and bit
matrices, which can be executed on different
cores separately. Algorithm 2 presents how to
execute BFA in parallel with n cores. Scaling

Algorithm 2. Parallelize bfa on multi-core platform.

 Input: BFA B = {Q, Σ, B, v0, vf}, input data C = c0c11c12…c1m1 c21c22…c2m2 …
cn1cn2…cnmn, number of threads n

 Output: bit vector vn that v v0 →
B

C n

1 // perform optimized BMM on each core
2 foreach i ∈ [1…n] parallel do
3 Mi ← IN×N // initialize Mi as an identity matrix
4 for k = 0 → mi do
5 Mi →Mi × B(:,cik)
6 end
7 end
8 // get the final vn

9 vn ← v0 ×B(:,c0)
10 for i = 1 → n do
11 vn ←vn × Mi

12 end

China Communications • February 2019182

tors in the transition table B are compressed
by Roaring Bitmaps. These optimizations,
together with the instruction level accelera-
tion, decrease both computation overhead and
memory usage of BFA.

V. EVALUATIONS

To evaluate the performance of BFA, we
conducted a series of experiments on an HP
Z228 workstation with Intel Core i7-4790 Pro-
cessor (BMI1 and SSE4 supported) and 8GB
memory. NFA, DFA, mDFA [15], Hybrid-FA
[12], and D2FA [11] are implemented based on
Regular Expression Processor [27] as compar-
isons.

Six rulesets are tested in the experiments,
as shown in Table I. Four rulesets are from
the real world: two small rulesets (snort1 and
snort2) from Snort, one ruleset (bro) from
Bro [28], and one large ruleset (tcp) from the
Regular Expression Processor. Two synthetic
rulesets are also used in the experiments. The
dotstar ruleset consists of 300 regular expres-
sions with “.*” characters, and the range rule-
set consists of 300 regular expressions with
range semantics. These synthetic rulesets are
complex and challenging for deep inspection
matching engines.

5.1 Total Running Time

First, we capture network traffic from our
campus network and dump an 8MB PCAP file
treated as the input data for our experiments.
We measure the compiling time of different
engines and the matching time for the input
data on all the rulesets in Table I.

Pre-processing time
In Table II, we can see that the pre-process-

ing procedure of NFA is the fastest among all
these matching engines, since the data struc-
ture construction of all other previous work
depends on a pre-built NFA and hence require
more pre-processing time. DFA requires much
more time than NFA because the subset con-
struction algorithm is very time-consuming,
especially when regular expressions ruleset

first to the last, whose complexity is O(W) if
the length of the bit vector is W. In our opti-
mization, we leverage the built-in instructions
provided by recent popular processers to re-
duce the complexity of the FindBitPosition()
function. LZCNT, which is first introduced in
Intel Haswell microarchitecture, provides the
capability to count the number of leading zero
bits in a bit vector. Similarly, POPCNT, which
is first introduced in Intel Nehalem microar-
chitecture, can count the number of bits set
to 1 in a bit vector. These instructions have a
high throughput that is up to one operation per
CPU cycle. In BFA, we combine the LZCNT
and POPCNT instructions with the shift oper-
ation to accelerate the execution of FindBit-
Position() function. The union of multiple bit
vectors (Line 3 to Line 5) is also parallelized
by CPU SIMD operations. The BMM opera-
tion of BFA on multi cores (Line 4 to Line 6 in
Algorithm 2) is speeded up by similar optimi-
zations as shown in Algorithm 3.

In addition, because of the low density of
bits that are set to 1 in the transition table B,
many bitmap compression techniques can be
used to efficiently compress the memory con-
sumption of BFA. What is more, several latest
bitmap methods (including Roaring Bitmaps
[25], WAH [26], etc.) have already provided
the capabilities of direct bitwise operations
over bit vectors in compressed format, even
without decompression in advance. These
operations are actually faster than those over
uncompressed bitmaps. In BFA, the bit vec-

Algorithm 3. Optimized state transitions in BFA.

 Input: bit vector vi, input character k, BFA B = {Q, Σ, B, v0, vf}
 Output: bit vector vi+1

1 S ← FindBitPosition(vi)
2 vi+1 ← 0
3 for pos ∈ S do
4 vi+1 ← vi+1 ∨B(pos,k)
5 end

Table I. Rulesets information.
name snort1 snort2 bro tcp dotstar range

number of REs 24 34 217 733 300 300

complexity low low moderate high high high

China Communications • February 2019 183

though the large rulesets have been divided
into smaller subsets, it is still complex and
time-consuming to construct the DFA for the
subsets. As a result, it takes 4 to 10 hours for
mDFA to accomplish the regular expressions
pre-processing.

Our method, BFA, only needs around
20% to 50% more pre-processing time than
NFA since the construction of BFA is only to
encode the NFA in forms of bits, and could
handle all large and complex rulesets. In com-
parison with the remaining approaches, the
pre-processing procedure of BFA is about 20
times faster than Hybrid-FA, more than 100
times faster than DFA and D2FA and 500 to
8,000 times faster than mDFA.

Matching Time
In terms of matching speed, DFA is always

the fastest since it performs only one state
lookup per input character. D2FA needs to visit
the default state first and then find the correct
transition, so its matching speed is slower than
DFA. NFA has the worst matching speed ow-
ing to the non-deterministic memory accesses.
Hybrid-FA achieves a higher matching speed
than NFA, because most non-malicious traffic
is filtered by the head DFA in Hybrid-FA. The
matching speed of BFA is of the same order
of magnitude as Hybrid-FA and D2FA, which
is about 10 to 100 times faster than NFA. For
large or complex rulesets (tcp, dotstar and
range), the matching time of mDFA is in pro-

is large or complex. Table II shows that DFA
consumes 100 times more pre-processing
time to build its data structure compared to
NFA. Hybrid-FA is between NFA and DFA
since it builds a hybrid structure composed
of a head DFA and several tail NFAs. D2FA
requires even more pre-processing time than
DFA as it is designed to reduce the memory
usage of DFA by analysing the redundant state
transitions in DFA and compressing them into
default states. For large or complex rulesets
(tcp, dotstar and range), DFA, Hybrid-FA and
D2FA all fail to generate their data structures
because the memory consumption exceeds the
limit of our platform after hours’ compiling.

To handle with these large rulesets, we use
regular expression grouping (mDFA) methods
to group the rules into several subsets so that
the finite automata could be constructed on
our experimental platform. We implement the
grouping method in [15] and generate as fewer
regular expression subsets as possible in order
to reduce the matching performance degra-
dation caused by multiple DFAs. For rulesets
tcp, dotstar and range, the number of subsets
is 13, 11 and 2 respectively. As can be seen in
Table II, the grouping method requires enor-
mous pre-processing time, which can be as-
cribed to two parts. First, the grouping method
needs to calculate the DFA state of every pair
of regular expression rules to build the con-
volvement relationship matrix. Second, even

Table II. Pre-processing time and matching time of different engines on different rulesets (unit: second).
rulesets snort1 snort2 bro tcp dotstar range

NFA
pre-processing 0.127 0.153 0.320 52.244 3.052 1.827

matching 16.897 16.95 122.406 239.075 148.933 71.589

DFA
pre-processing 18.535 26.357 38.985 \ \ \

matching 0.072 0.074 0.109 \ \ \

mDFA
pre-processing \ \ \ 34,649.657 15,859.416 20,965.463

matching \ \ \ 1.577 1.194 0.361

Hybrid-FA
pre-processing 2.494 3.318 18.024 \ \ \

matching 0.699 0.849 2.044 \ \ \

D2FA
pre-processing 20.398 30.247 39.917 \ \ \

matching 1.163 1.172 0.956 \ \ \

BFA

pre-processing 0.168 0.216 0.493 60.719 4.131 2.593

matching (×1) 1.521 1.512 3.620 2.080 2.077 2.053

matching (×8) 0.539 0.463 1.482 1.164 0.946 0.745

China Communications • February 2019184

ory, except for the bro ruleset. DFA requires
the largest memory space to store its data
structure, which is around 35 times more than
NFA. D2FA efficiently reduces the size of DFA
by compressing redundant transitions, and the
memory usage of bro ruleset is even smaller in
comparison with NFA. The memory consump-
tion of Hybrid-FA and BFA lies between that
of NFA and DFA. More importantly, BFA only
requires about 20MB to 30MB memory for
large and complex rulesets, while the memory
usage of DFA and DFA-based engines all ex-
ceed the maximum size of our experimental
platform. mDFA consumes aournd 500 MB
to 600 MB memory, which is 15 to 25 times
more than BFA.

5.3 Optimizations

In this subsection, we evaluate BFA without
instruction level accelerations to demonstrate
the benefit brought by our optimizations in-
troduced in Section IV. Figure 2 shows the
pre-processing time, matching time and total
time of NFA, BFA without acceleration (BFA-
NA) and BFA on ruleset snort1. The pre-pro-
cessing time of BFA-NA and BFA is almost
the same, which is a little more than that of
NFA. For the matching speed, BFA-NA only
achieves about 15% improvement compared
to NFA, while BFA is more than 10 times fast-
er than NFA.

In NFA, the time complexity of state tra-
versal is O(n2) [29]. For a Boolean multiplica-
tion between a vector and a matrix, the time
complexity decreases to O(n2/log(n)) [30]. As
a result, the Boolean multiplication would be
faster in theory than the states traversals in
NFA without hardware acceleration. However,
the conducted evaluation doesn’t present sig-

portion to the number of subsets generated by
the grouping algorithm, which doesn’t show
significant advantage than Hybrid-FA, D2FA
and BFA. Besides, BFA running with 8 threads
achieves around 3 to 4 times faster matching
speed compared to the single thread BFA.

When taking both pre-processing time
and matching time into consideration, BFA
consumes the least time to complete regular
expression matching on this PCAP file, obtain-
ing 3 to 5 times improvement than Hybrid-FA,
more than 10 times improvement than NFA,
DFA and D2FA, and around 500 to 4,500 times
improvement than mDFA for large or complex
rulesets. For all rulesets which contains no
more than 300 regular expression rules, NFA
and BFA are the only two approaches that
meet the 5 minutes update time requirement
for some reaction-sensitive security appliance
such as [2], while BFA achieves significantly
better matching performance than NFA.

5.2 Memory usage

We also measure the memory usage of differ-
ent matching methods on these rulesets. As
shown in Table III, NFA has the most compact
data structure and consumes the least mem-

Table III. Memory usage of different engines on different rulesets (unit: kb).
rulesets snort1 snort2 bro tcp dotstar range

NFA 162.520 250.882 605.470 4,035.996 3,165.721 3,314.318

DFA 8,835.040 9,988.096 6,689.792 \ \ \

mDFA \ \ \ 485,840.786 609,587.440 620,601.645

Hybrid-FA 1,213.421 1,261.441 1,713.247 \ \ \

D2FA 264.122 310.149 172.956 \ \ \

BFA 1,203.646 1,843.654 4,413.894 30,069.300 23,212.102 24,041.348

0 5 10 15 20

BFA

BFA-NA

NFA

Total time (second)

pre-processing
matching

Fig. 2. Evaluation of NFA, BFA without accelera-
tion (BFA-NA) and BFA on ruleset snort1

China Communications • February 2019 185

from Darpa [31] as the input data in addition
to the campus network traffic illustrated in
Section 5.1. These data contain various mali-
cious patterns, leading to more rule matches
when performing deep inspection. Figure 3
presents the update abilities of NFA, DFA,
Hybrid-FA, D2FA and BFA on different rule-
sets and different traffic. Experiments on these
three types of network traffic (figure 3a, fig-
ure3b and figure 3c) show the similar results.
It is not surprising that D2FA gets the worst
update ability since it aims at compressing the
memory consumption of traditional DFA at

nificant improvement of BFA-NA over NFA.
The O(n2) time complexity only occurs in the
worst case for NFA where every state in NFA
is in active status, and every state needs to
access all the other states for a input character.
In average cases especially when most of the
network traffic is non-malicious traffic, only a
small part of NFA states are active. Therefore,
the advantage of BFA-NA is not notable.

 It can also be concluded that the optimiza-
tions actually contribute to the major boost of
BFA. On one hand, BFA is a software/hard-
ware co-design to achieve high-speed regular
expression matching with fast pre-processing,
On the other hand, without encoding to the
types of bit vectors and bit matrices, state tra-
versals in NFA or DFA cannot use POPCNT,
LZCNT, and other bit manipulation methods
directly in order to improve the performance.
Therefore, the two ideas of BFA – Boolean
matrix multiplication and CPU instruction ac-
celeration – work together as a whole to obtain
a better trade-off among pre-processing time,
matching time and memory usage.

5.4 Update ability

As far as we know, there is no universal stan-
dard to measure the update abilities of regular
expression matching engines. It is not enough
to focus only on the construction time for a
given ruleset or the matching time for specific
network traffic. In fact, both of the through-
put provided by a matching engine and the
pre-processing time before it takes into effect
need to be considered.

In this paper, a new criterion is proposed to
quantify how a matching engine is suitable for
a scenario where regular expression rules are
frequently updated: the throughput a matching
engine achieves per unit pre-processing time.
Formally, for a matching engine Ei, if it could
obtain Ti throughput in ti pre-processing time,
then the update ability (UA) of Ei is defined as:

 UA E T t(i i i) = (3)

In order to measure the update abilities of
different matching engines, we also use two
different intrusion detection evaluation traffic

Fig. 3. Update abilities of different matching en-
gines on different rulesets and traffic.

1

10

100

1000

snort1 snort2 bro

Up
da

te
 A

bi
lit

y

NFA DFA Hybrid-FA D2FA BFA (×1) BFA (×8)

1

10

100

1000

snort1 snort2 bro

Up
da

te
 A

bi
lit

y

NFA DFA Hybrid-FA D2FA BFA (×1) BFA (×8)

1

10

100

1000

snort1 snort2 bro

Up
da

te
 A

bi
lit

y

NFA DFA Hybrid-FA D2FA BFA (×1) BFA (×8)

(a) Campus Network Traffic

(b) Darpa Traffic 1

(c) Darpa Traffic 2

China Communications • February 2019186

ber of threads increases, the matching speed
of BFA grows almost linearly. We can also
observe that the speedup ratios of BFA differ
for different rulesets. This is because the tran-
sition tables in BFA for ruleset snort1 and bro
contain more bits that are set to 1, so the state
transitions would take more time than snort2.
Experiments on other rulesets obtain the sim-
ilar results. In summary, BFA achieves an
almost linear speedup ratio with multi threads
and could obtain about 2 to 4 times speedup
on an 8 core platform.

We also compare BFA to ParaRegex, which
efficiently parallelizes DFA and DFA-based
methods on multi-core platform. ParaRegex
improves the matching speed by leveraging all
CPU cores, but it does not do anything about
the pre-processing procedure. Figure 5 shows
the evaluations of the update abilities of both
BFA and ParaRegex calculated from formula
(3). Obviously, BFA still achieves about 2 to
8 times more update abilities compared to
ParaRegex on the same multi-core platform.

VI. CONCLUSION

Regular expression matching is a fundamen-
tal component of deep inspection. While
many researches only focus on improving
the matching speed or reducing the memory
consumption, the pre-processing of regular
expression matching engines does not arouse
much concern. As the network is becoming
more dynamic than before, the state-of-the-art
matching engines cannot meet the requirement
of high-speed matching and fast pre-process-
ing requirement simultaneously. In this paper,
we propose BFA, a novel matching engine for
deep inspection, which achieves high-speed
regular expression matching with fast pre-pro-
cessing.

The core idea of BFA is to transform the
state transitions in traditional NFA or DFA
into a multiplication between a bit vector and
a bit matrix, which is in turn accelerated using
fast bit manipulation and instruction level par-
allelism provided by modern commodity pro-
cessors. Bitmap compression techniques are

the cost of slower matching speed and longer
pre-processing time. DFA method has a slight
improvement over NFA and Hybrid-FA be-
cause of the leading throughput although DFA
needs more pre-processing time. Our method
BFA achieves about 5 times more update abil-
ity compared to DFA, Hybrid-FA and NFA
and 20 times more update ability compared to
D2FA with just a single thread. When it scales
to a multi-core platform, BFA can obtain
around 3 times more update ability than the
single thread. These experiments prove that
BFA has a far better update ability, and thus
BFA is more suitable for the frequently updat-
ing scenarios in comparison with state-of-the-
art methods.

5.5 Scalability

To test the scalability of BFA, we run BFA
with 1 to 8 threads on our experimental plat-
form. Figure 4 shows the speedup ratio of BFA
on rulesets snort1, snort2 and bro, treating the
single thread BFA as a baseline. As the num-

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9

sp
ee

du
p

ra
tio

number of threads

snort1 snort2 bro

1

10

100

1000

snort1 snort2 bro

Up
da

te
 A

bi
lit

y

ParaRegex BFA

Fig. 4. Speedup ratio of bfa on rulesets snort1,
snort2 and bro with 1 to 8 threads.

Fig. 5. Update abilities of pararegex and bfa on
the same multi-core platform.

China Communications • February 2019 187

[8] Kleene S C. Representation of events in nerve
nets and finite automata. No. RAND-RM-704.
RAND PROJECT AIR FORCE SANTA MONICA
CA, 1951

[9] Snort, https://www.snort.org/.
[10] Aho A V, Sethi R, Ullman J D. Compilers: Princi-

ples, Techniques, and Tools (1979).
[11] Kumar S, Dharmapurikar S, Yu F, et al. "Algo-

rithms to accelerate multiple regular expres-
sions matching for deep packet inspection."
ACM SIGCOMM Computer Communication Re-
view. Vol. 36. No. 4. ACM, 2006.

[12] Becchi M, Crowley P. "A hybrid finite automaton
for practical deep packet inspection." Proceed-
ings of the 2007 ACM CoNEXT conference. ACM,
2007.

[13] Liu A X, Torng E. "An overlay automata ap-
proach to regular expression matching." INFO-
COM, 2014 Proceedings IEEE. IEEE, 2014.

[14] Xu Y, Jiang J, Wei R, et al. "TFA: A Tunable Finite
Automaton for Pattern Matching in Network
Intrusion Detection Systems." IEEE journal on
selected areas in communications 32.10 (2014):
1810-1821.

[15] Liu T, Liu A X, Shi J, et al. "Towards fast and op-
timal grouping of regular expressions via DFA
size estimation." IEEE Journal on Selected Areas
in Communications 32.10 (2014): 1797-1809.

[16] Fu Z, Wang K, Cai L, et al. "Intelligent group-
ing algorithms for regular expressions in deep
inspection." Computer Communication and
Networks (ICCCN), 2014 23rd International Con-
ference on. IEEE, 2014.

[17] Sidhu R, Prasanna V K. "Fast regular expression
matching using FPGAs." Field-Programmable
Custom Computing Machines, 2001. FCCM'01.
The 9th Annual IEEE Symposium on. IEEE, 2001.

[18] Yang Y H E, Jiang W, Prasanna V K. "Compact
architecture for high-throughput regular ex-
pression matching on FPGA." Proceedings of the
4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. ACM,
2008.

[19] Yu X, Becchi M. "GPU acceleration of regular ex-
pression matching for large datasets: exploring
the implementation space." Proceedings of the
ACM International Conference on Computing
Frontiers. ACM, 2013.

[20] Cascarano N, Rolando P, Risso F, et al. "iNFAnt:
NFA pattern matching on GPGPU devices." ACM
SIGCOMM Computer Communication Review
40.5 (2010): 20-26.

[21] Luchaup D, Smith R, Estan C, et al. "Multi-byte
regular expression matching with speculation."
International Workshop on Recent Advances in
Intrusion Detection. Springer, Berlin, Heidelberg,
2009.

[23] Fu Z, Liu Z, Li J. "Efficient Parallelization of Reg-
ular Expression Matching for Deep Inspection."
Computer Communication and Networks (IC-

also used to reduce the memory usage of BFA.
BFA is also designed to scale well on multi-
core platform. Besides, a new criterion to mea-
sure the update ability of different matching
engines is proposed in this paper. Our evalu-
ations demonstrate that BFA achieves 5 to 20
times improvement compared to existing al-
gorithms, and could get 3 to 4 times additional
gains on a multi-core platform. By obtaining
a much better trade-off among pre-processing,
matching and memory consumption, BFA is
able to meet the strict update time requirement
for reaction-sensitive security appliances and
perform high matching performance for large
and complex regular expression rules in the
meantime.

Our future work includes more efficient
state encoding and accelerating multiplications
on hardware (such as GPU and FPGA) to fur-
ther improve the matching speed of BFA.

ACKNOWLEDGEMENT

This work was supported by the National Key
Technology R&D Program of China under
Grant No. 2015BAK34B00 and the National
Key Research and Development Program of
China under Grant No. 2016YFB1000102.

References
[1] Thompson K. "Programming techniques: Regu-

lar expression search algorithm." Communica-
tions of the ACM 11.6 (1968): 419-422.

[2] Cisco Email Security Appliance Data Sheet,
https://www.cisco.com/c/en/us/products/
collateral/security/email-security-appliance/
data-sheet-c78-729751.html/.

[3] Xu C, Chen S, Su J, Yiu SM, Hui LC. "A survey on
regular expression matching for deep packet
inspection: Applications, algorithms, and hard-
ware platforms." IEEE Communications Surveys
& Tutorials 18.4 (2016): 2991-3029.

[4] Knuth D E, Morris, Jr J H, Pratt V R. "Fast pattern
matching in strings." SIAM journal on computing
6.2 (1977): 323-350.

[5] Boyer R S, Moore J S. "A fast string searching
algorithm." Communications of the ACM 20.10
(1977): 762-772.

[6] Aho A V, Corasick M J. "Efficient string match-
ing: an aid to bibliographic search." Communi-
cations of the ACM 18.6 (1975): 333-340.

[7] Wu S, Manber U. "A fast a lgor i thm for
multi-pattern searching." (1994).

China Communications • February 2019188

Biographies
Zhe Fu, is currently a Ph.D. stu-
dent at Tsinghua University,
Beijing, China. He received the
B.S. degree in the Department
of Automation from Tsinghua
University, Beijing, China, in
2013. He has been an IEEE stu-
dent member since 2015. His

research interests focus on security issues of network
especially on pattern matching and traffic manage-
ment. Email: fu-z13@mails.tsinghua.edu.cn

Jun Li, is currently Professor of
Research Institute of Informa-
tion Technology (RIIT), Tsing-
hua University. He is also Exec-
utive Deputy Director of the
Tsinghua National Lab for In-
formation Science and Tech-
nology. He holds a PhD degree

in CS from New Jersey Institute of Technology (NJIT),
and MS and BS degrees in Automation from Tsing-
hua University. He is a member of IEEE since 1996,
and his research interest is in network security and
Software Defined Network (SDN). Email: junl@tsing-
hua.edu.cn

CCN), 2017 26th International Conference on.
IEEE, 2017.

[24] Yu H. "An improved combinatorial algorithm
for boolean matrix multiplication." International
Colloquium on Automata, Languages, and Pro-
gramming. Springer, Berlin, Heidelberg, 2015.

[25] Lemire D, Ssi-Yan-Kai G, Kaser O. "Consistently
faster and smaller compressed bitmaps with
roaring." Software: Practice and Experience 46.11
(2016): 1547-1569.

[26] Wu K, Otoo E J, Shoshani A. "Optimizing bit-
map indices with efficient compression." ACM
Transactions on Database Systems (TODS) 31.1
(2006): 1-38.

[27] M Becchi. Regular expression processor, http://
regex.wustl.edu/.

[28] Bro, https://www.bro.org/.
[29] Yu F, Chen Z, Diao Y, et al. "Fast and memo-

ry-efficient regular expression matching for
deep packet inspection." Proceedings of the
2006 ACM/IEEE symposium on Architecture for
networking and communications systems. ACM,
2006.

[30] Arlazaro Vl, Dinits E A, Kronrod M A, et al. "On
economical construction of the transitive clo-
sure of an oriented graph." Doklady Akademii
Nauk. Vol. 194. No. 3. Russian Academy of Sci-
ences, 1970.

[31] Darpa intrusion detection evaluation dataset,
http://www.ll.mit.edu/ideval/data/1999data.
html/.

