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using regular expressions. To perform match-
ing, regular expressions are compiled into 
either NFA (Nondeterministic Finite Automa-
ton) or DFA (Deterministic Finite Automaton) 
[1]. Though NFA has a more compact data 
structure than DFA, the nondeterministic state 
transitions would significantly slow down the 
performance of NFA in the worst case. On the 
contrary, DFA only needs one state transition 
for each input character. As a result, DFA is 
very fast and becomes the preferred choice for 
deep inspection.

However, the outstanding performance of 
DFA comes at the price of huge memory con-
sumption and long pre-processing time. With 
the rapid growth of the Internet, both of the 
network bandwidth and the number of deep 
inspection rules have been increasing dramati-
cally in the past decades. When handling with 
a large number of regular expressions, the size 
of DFA usually explodes exponentially, lead-
ing to huge memory consumption. Worse still, 
the enforcement of deep inspection rules is 
becoming more frequent than before because 
the network is getting more and more dynamic 
along with the fast development of SDN (Soft-
ware Defined Network) and NFV (Network 
Function Virtualization). In Cisco’s email 
security appliance, the rules are updated every 
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I. INTRODUCTION

Deep inspection is one of the most fundamen-
tal techniques in various network functional-
ities, including traffic identification, intrusion 
detection, content-based charge, data loss pre-
vention, etc. Nowadays, regular expressions 
are playing an important role in the implemen-
tation of deep inspection for their powerful ex-
pressiveness, and almost all rules are written 
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spam email filtering, etc.), bandwidth man-
agement (QoS guarantees, bandwidth pricing, 
etc.), user profiling (differentiation charge, ad 
injection, etc.) and so forth. The key technol-
ogy of deep inspection is pattern matching, 
which scans the payload of network packets 
against a set of predefined rules.

In early days, the deep inspection rules 
were written in exact strings. Many string 
matching algorithms have been proposed, in-
cluding Knuth-Morris-Pratt (KMP) [4], Boy-
er-Moore (BM) [5] for single pattern matching 
and Aho-Corasick (AC) [6], Wu-Manber 
(WM) [7] for multiple pattern matching. Over 
time, the patterns are getting more and more 
complicated, therefore exact strings cannot 
conveniently characterize the patterns for deep 
inspection anymore. Regular expression was 
first proposed in [8], and has become the first 
choice to describe the patterns for deep inspec-
tion due to its powerful ability of expression. 
The famous open-source network intrusion de-
tection system Snort [9] has already employed 
more than 27,000 signatures defined by regu-
lar expressions.

NFA and DFA are two of the most pop-
ular methods to perform regular expression 
matching, and they are both 5-tuples {Q, Σ, δ, 
q0, q f}. Q and Σ represent a finite set of states 
and a finite set of input characters respectively. 
q0 denotes the start states, while q f denotes the 
accept states. The only difference is the transi-
tion function δ. In DFA, δ only takes one state 
and returns a single state for an input symbol, 
while in NFA, δ may return empty, one state 
or multiple states. The non-deterministic tran-
sitions slow down the speed of NFA seriously 
in worst cases and restrict its applications in 
deep inspection. Therefore, almost all match-
ing engines rely on DFA to match regular ex-
pressions for high-speed deep inspection.

However, the high matching speed of DFA 
brings the following two drawbacks. First, 
with the increase of number and complexity of 
regular expressions, the size of corresponding 
DFA expands exponentially, which is called 
state explosion in DFA. Second, the construc-

3 to 5 minutes to provide an up-to-date threat 
defence capability [2]. In [3], the authors also 
demonstrate that the update performance is 
one of the most crucial challenges for regular 
expression matching because the deep inspec-
tion system must react quickly to the attack 
characteristics that are changed rapidly. The 
significant amount of pre-processing time 
makes DFA and DFA based matching engines 
hard to meet the pace of rule update in prac-
tice.

In this paper, we propose BFA (Bit-based 
Finite Automaton), an update-friendly regular 
expression matching engine for deep inspec-
tion. Instead of conventional state transitions 
in NFA or DFA, BFA executes Boolean matrix 
multiplications to perform regular expression 
matching. In addition, some optimization 
methods are put forward for BFA to further 
accelerate the matching speed and reduce 
the memory consumption. We also propose 
a new criterion to measure the update abili-
ties of different regular expression matching 
engines. Evaluations demonstrate that BFA 
achieves fast matching speed in a very short 
period of pre-processing time, about 5 to 20 
times improvement on average compared to 
state-of-the-art matching methods. BFA also 
scales well and could get 3 to 4 times further 
improvement on a commodity multi-core plat-
form.

The rest of the paper is organized as fol-
lows. In Section II, we introduce the back-
ground of regular expression matching. In 
Section III, the design and implementation of 
BFA are proposed. Further optimizations are 
described in Section IV. In Section V, several 
experiments are conducted to evaluate the per-
formance of BFA and other matching engines. 
A conclusion is drawn in Section VI.

II. BACKGROUND

Deep inspection, as its name indicates, is to 
inspect the packet deeply, analyse the payload 
and make the appropriate decisions according 
to the inspection rules. Deep inspection is 
widely used in network security (anti-virus, 

In this paper, a nov-
el matching engine 
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to achieve high-speed 
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matching with fast 
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GPU memory also limits the size and com-
plexity of regular expression rulesets.

There are also some proposals that paral-
lelize regular expression matching on multi-
core platform. Speculation based methods [21] 
need to guess the start DFA state of each data 
block, but the frequent rematch will degrade 
the matching performance. Enumeration based 
methods [22] compute all the state transitions 
from every possible DFA state, whose com-
putation overhead is quite huge when DFA is 
large. ParaRegex [23] takes advantage of the 
state aggregation phenomenon during DFA 
traversals and reduces the overhead of states 
enumeration. Nevertheless, this type of work 
also relies on the construction of DFA.

None of the previous work described above 
addresses the problem of regular expression 
pre-processing in deep inspection. Most 
studies require even more pre-processing 
time compared to the original NFA or DFA 
methods. As the network is becoming more 
dynamic and flexible, so does the need for a  
high-speed regular matching engine with fast 
pre-processing.

III. DESIGN AND IMPLEMENTATION

3.1 Overview

NFA has two advantages that are suitable for 
the frequently updating scenarios: fast pre-pro-
cessing time and relatively low memory con-
sumption. However, the poor matching perfor-
mance of NFA, which is attributed to uncertain 
active states and memory accesses, severely 
limits its applications in deep inspection. To 

tion of DFA usually takes a significant amount 
of time since the construction from an NFA 
to an equivalent DFA needs to explore all the 
possible active states in the NFA through the 
subset construction algorithm [10].

Until now, many of the research efforts are 
focusing only on reducing the memory con-
sumption of DFA. D2FA [11] omits the equiv-
alent transitions among different states and 
adds a default transition in order to compress 
the redundant state transitions. Hybrid-FA [12] 
constructs a hybrid structure with a head DFA 
followed by multiple tail NFAs. OD2FA [13] 
merges the DFA states deriving from the same 
NFA state into a super state to further decrease 
the number of DFA states. TFA [14] puts 
forward tunable finite automata to achieve a 
better balance between memory bandwidth 
and space. All these researches have to further 
analyse the structure of the built DFA, thus 
they need more pre-processing time and can-
not handle large or complex regular expression 
rulesets.

In [15-16], the authors proposed regular 
expression grouping methods that group the 
rules into several subsets and construct the 
DFA for each group individually to avoid state 
explosion when handling with a large scale 
of regular expressions. The shortcoming of 
this kind of work is that in deep inspection, 
a stream have to be matched with all of the 
DFAs to obtain the final matching result. 
This will decrease the matching performance 
linearly as the number of groups increasing. 
What’s more, the grouping methods cannot 
solve the DFA state explosion caused by single 
regular expression.

Hardware platforms are also widely used to 
accelerate regular expression matching. FPGA 
based methods [17-18] have advantages in 
pipeline and parallelism; however, the small 
size of on-chip memories limits the practical 
deployment of large-scale rulesets. Besides, 
the synthesis, implementation, and place and 
route procedures of FPGA design are also 
quite time-consuming. GPU based methods 
[19-20] make full use of the high memory 
bandwidth and massive execution units, but Fig. 1.  Example of BFA of regular expression “ab.*cd” 
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tial states and v f denotes a set of accept states.
Given a previously built NFA, the corre-

sponding BFA is constructed according to Al-
gorithm 1. Assuming that there are N states in 
an NFA and the size of the alphabet is Σ , the 

transition table B of BFA is made up of N × Σ  
bit vectors with the length of N. Each bit in the 
vector indicates the status of the corresponding 
state, i.e., whether this state is active or not. 
More precisely, in B( , )i k , a 1×N bit vector 
which stands for the state i and input character 
k, if the jth bit of this vector is 1, it denotes that 
if the input character is k and meanwhile the 
ith state of an NFA is active, then state j will be 
activated.

Figure 1 shows an intuitive example of 
the BFA constructed from a simple regular 
expression rule “ab.*cd”. In this instance, the 
corresponding NFA has 5 states, and the size 
of the alphabet is 4, so there are 5 4 20× =  bit 
vectors in the transition table B, and each vec-
tor has 5 bits. Taking B(2,c) (i.e., [0 0 1 1 0]) 
as an example, if the input character is c, and 
meanwhile state 2 is active, then state 2 and 3 
will be activated after reading character c. Fol-
lowing the steps in Algorithm 1, it is also easy 
to obtain that the start state vector v0= [1 0 0 
0 0] and the accept state vector v f= [0 0 0 0 1] 
for this example.

The procedure of BFA construction only 
requires a one-time full traversal of the NFA 
that is previously built, so the pre-processing 
procedure is much easier and faster than DFA 
and other DFA based methods.

3.3 State transitions in BFA

After constructing BFA in the form of bits, the 
state transitions could be further transformed 
into a Boolean Matrix Multiplication (BMM) 
between a bit vector and a bit matrix. Addi-
tionally, a bit vector vi with the length of N is 
used to record the active states after reading i 
input characters. If the next input character is 
k, then the kth column of the transition table B 
is picked out, denoted as B(:, )k . B(:, )k  is an 
N N×  bit matrix, which will be multiplied by 

overcome the shortcomings of NFA, BFA is 
designed to accelerate the state transitions of 
NFA. To implement BFA, firstly an NFA is 
generated from the regular expression ruleset 
via the Thompson's construction algorithm [1]. 
Then each state and each transition in the NFA 
are encoded into a bit vector. For every input 
character, the state traversal procedure turns 
into a Boolean multiplication between a vector 
and a matrix, which could be speeded up by 
CPU instruction level optimizations. Besides, 
due to the sparsity in bit vectors and bit matri-
ces, several bitmap compression methods can 
be leveraged to efficiently reduce the memory 
consumption of BFA. Next, more details about 
BFA design and implementation will be given.

3.2 BFA construction

BFA extends the 5-tuple definition of NFA and 
DFA, by introducing bit vectors to encode the 
states in automata. Formally, a BFA is defined 
as a 5-tuple {Q, Σ, B, v0, v f}. The first two 
terms are the same as those in traditional NFA. 
The transition table B is defined as a function 
to calculate the currently active states in BFA. 
Finally, the bit vector v0 denotes the set of ini-

Algorithm 1.  BFA construction.

  Input: NFA N ={Q, ∆, ∆, q0, qf}
  Output: BFA B ={Q, Σ, B, v0, vf}
1  // transition table initialization
2  B ← 0
3  foreach character k ∈Σ do
4   foreach i, j ∈ state Q do
5    if state i and j has a transition with label k then
6     B(i,k)[j] ← 1
7    end
8   end
9  end
10  // start state vector initialization
11  v0 ← 0
12  foreach state j ∈ state q0 do
13   v0[j] ← 1
14  end
15  // accept state vector initialization
16  vf ← 0
17  foreach state j ∈ state qf do
18   vf[j]←1
19  end
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BFA on multi cores does not require extra 
pre-processing time, but would add some 
additional computational overhead since the 
multiplication of two bit matrices is more 
complex than that between a bit vector and a 
bit matrix. After all cores complete the bit ma-
trix multiplication, the results of each core will 
be joined with the start state vector v0 in order 
to get the final state vector vn. Line 9 to Line 
12 in Algorithm 2 illustrate the related steps.

IV. OPTIMIZATIONS

Although BMM is simpler than traditional 
matrix multiplication [24], there is still a great 
potential to accelerate it using instruction level 
optimizations. The multiplication between the 
bit vector vi and the bit matrix B(:, )k  can be 
simplified as bitwise OR operations between vi 
and multiple bit vectors from B(:, )k . Besides, 
the process to decide whether the currently 
active states are accept states or not is actually 
a bitwise AND operation between vi and the 
accept state vector v f.

Algorithm 3 shows the procedure of opti-
mized state transitions in BFA. In Line 1, the 
function FindBitPosition() returns the posi-
tions of 1 in the bit vector . A brute force way 
is to check whether each bit is 1 or 0 from the 

the 1×N bit vector vi. We iteratively compute 
state transitions in BFA as below:
v vi+1 i

(1 ) (1 ) ( )× × ×N N N N[ ] ( [ ] (:, ) [ , ])j m k m j= ∨ ∧
m

B  (1)

In formula (1), m N∈[1, ]. vi[ ]m  denotes 
the mth bit in the vector vi, and B(:, )[ , ]k m j  
denotes the mth row and jth column of the bit 
matrix B(:, )k . In figure 1, suppose vi= [1 0 1 0 
0], which means the first and third state are ac-
tive. Assuming that the input character is c, the 
state transitions in BFA are obtained by formu-
la (2). The result vi+1= [1 0 1 1 0] indicates that 
after reading c, the first state, the third state, 
and the fourth state will be activated.

   
[1 0 1 0 0

= [1 0 1 1 0

]×

 
 
 
 
 
 
  

1 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0

]

 (2)

To determine whether a match happens or 
not, vi is intersected by the accept state vector 
v f, i.e. v vi f∧ . In the example of figure 1, the 
intersection of vi+1 and v f equals [0 0 0 0 0]. 
The all-zero result means no match is found 
at this stage. Otherwise, the non-zero result 
indicates at least one regular expression is 
matched.

3.4 Multi-core scaling

The data-parallelization of NFA or DFA on 
multi-core platform is extremely hard because 
of the strong dependencies and unpredictable 
memory accesses during state transitions. 
In recent years, several methods have been 
proposed to parallelize DFA or DFA based 
methods and try to decrease the overhead as 
much as possible [21-23]. However, all these 
approaches have to build the DFA first, which 
needs plenty of pre-processing time and hence 
not suitable for the frequently update of rule-
sets in deep inspection.

In BFA, the state transitions are actually 
a series of BMM between bit vectors and bit 
matrices, which can be executed on different 
cores separately. Algorithm 2 presents how to 
execute BFA in parallel with n cores. Scaling 

Algorithm 2.  Parallelize bfa on multi-core platform.

 Input:  BFA B = {Q, Σ, B,  v0, vf}, input data C = c0c11c12…c1m1 c21c22…c2m2 …
cn1cn2…cnmn, number of threads n

 Output: bit vector vn that v v0 →
B

C n

1 // perform optimized BMM on each core
2 foreach i ∈ [1…n] parallel do
3  Mi ← IN×N // initialize Mi as an identity matrix
4  for k = 0 → mi do
5   Mi →Mi × B(:,cik)
6  end
7 end
8 // get the final vn

9 vn ← v0 ×B(:,c0)
10 for i = 1 → n do
11  vn ←vn × Mi 

12 end
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tors in the transition table B are compressed 
by Roaring Bitmaps. These optimizations, 
together with the instruction level accelera-
tion, decrease both computation overhead and 
memory usage of BFA.

V. EVALUATIONS

To evaluate the performance of BFA, we 
conducted a series of experiments on an HP 
Z228 workstation with Intel Core i7-4790 Pro-
cessor (BMI1 and SSE4 supported) and 8GB 
memory. NFA, DFA, mDFA [15], Hybrid-FA 
[12], and D2FA [11] are implemented based on 
Regular Expression Processor [27] as compar-
isons.

Six rulesets are tested in the experiments, 
as shown in Table I. Four rulesets are from 
the real world: two small rulesets (snort1 and 
snort2) from Snort, one ruleset (bro) from 
Bro [28], and one large ruleset (tcp) from the 
Regular Expression Processor. Two synthetic 
rulesets are also used in the experiments. The 
dotstar ruleset consists of 300 regular expres-
sions with “.*” characters, and the range rule-
set consists of 300 regular expressions with 
range semantics. These synthetic rulesets are 
complex and challenging for deep inspection 
matching engines.

5.1 Total Running Time

First, we capture network traffic from our 
campus network and dump an 8MB PCAP file 
treated as the input data for our experiments. 
We measure the compiling time of different 
engines and the matching time for the input 
data on all the rulesets in Table I.

Pre-processing time
In Table II, we can see that the pre-process-

ing procedure of NFA is the fastest among all 
these matching engines, since the data struc-
ture construction of all other previous work 
depends on a pre-built NFA and hence require 
more pre-processing time. DFA requires much 
more time than NFA because the subset con-
struction algorithm is very time-consuming, 
especially when regular expressions ruleset 

first to the last, whose complexity is O(W) if 
the length of the bit vector is W. In our opti-
mization, we leverage the built-in instructions 
provided by recent popular processers to re-
duce the complexity of the FindBitPosition() 
function. LZCNT, which is first introduced in 
Intel Haswell microarchitecture, provides the 
capability to count the number of leading zero 
bits in a bit vector. Similarly, POPCNT, which 
is first introduced in Intel Nehalem microar-
chitecture, can count the number of bits set 
to 1 in a bit vector. These instructions have a 
high throughput that is up to one operation per 
CPU cycle. In BFA, we combine the LZCNT 
and POPCNT instructions with the shift oper-
ation to accelerate the execution of FindBit-
Position() function. The union of multiple bit 
vectors (Line 3 to Line 5) is also parallelized 
by CPU SIMD operations. The BMM opera-
tion of BFA on multi cores (Line 4 to Line 6 in 
Algorithm 2) is speeded up by similar optimi-
zations as shown in Algorithm 3.

In addition, because of the low density of 
bits that are set to 1 in the transition table B, 
many bitmap compression techniques can be 
used to efficiently compress the memory con-
sumption of BFA. What is more, several latest 
bitmap methods (including Roaring Bitmaps 
[25], WAH [26], etc.) have already provided 
the capabilities of direct bitwise operations 
over bit vectors in compressed format, even 
without decompression in advance. These 
operations are actually faster than those over 
uncompressed bitmaps. In BFA, the bit vec-

Algorithm 3.  Optimized state transitions in BFA.

 Input: bit vector vi, input character k, BFA B = {Q, Σ, B, v0, vf}
 Output: bit vector vi+1

1 S ← FindBitPosition(vi)
2 vi+1 ← 0
3 for pos ∈ S do
4  vi+1 ← vi+1 ∨B(pos,k)
5 end
 

Table I.  Rulesets information.
name snort1 snort2 bro tcp dotstar range

number of REs 24 34 217 733 300 300

complexity low low moderate high high high
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though the large rulesets have been divided 
into smaller subsets, it is still complex and 
time-consuming to construct the DFA for the 
subsets. As a result, it takes 4 to 10 hours for 
mDFA to accomplish the regular expressions 
pre-processing.

Our method, BFA, only needs around 
20% to 50% more pre-processing time than 
NFA since the construction of BFA is only to 
encode the NFA in forms of bits, and could 
handle all large and complex rulesets. In com-
parison with the remaining approaches, the 
pre-processing procedure of BFA is about 20 
times faster than Hybrid-FA, more than 100 
times faster than DFA and D2FA and 500 to 
8,000 times faster than mDFA.

Matching Time
In terms of matching speed, DFA is always 

the fastest since it performs only one state 
lookup per input character. D2FA needs to visit 
the default state first and then find the correct 
transition, so its matching speed is slower than 
DFA. NFA has the worst matching speed ow-
ing to the non-deterministic memory accesses. 
Hybrid-FA achieves a higher matching speed 
than NFA, because most non-malicious traffic 
is filtered by the head DFA in Hybrid-FA. The 
matching speed of BFA is of the same order 
of magnitude as Hybrid-FA and D2FA, which 
is about 10 to 100 times faster than NFA. For 
large or complex rulesets (tcp, dotstar and 
range), the matching time of mDFA is in pro-

is large or complex. Table II shows that DFA 
consumes 100 times more pre-processing 
time to build its data structure compared to 
NFA. Hybrid-FA is between NFA and DFA 
since it builds a hybrid structure composed 
of a head DFA and several tail NFAs. D2FA 
requires even more pre-processing time than 
DFA as it is designed to reduce the memory 
usage of DFA by analysing the redundant state 
transitions in DFA and compressing them into 
default states. For large or complex rulesets 
(tcp, dotstar and range), DFA, Hybrid-FA and 
D2FA all fail to generate their data structures 
because the memory consumption exceeds the 
limit of our platform after hours’ compiling.

To handle with these large rulesets, we use 
regular expression grouping (mDFA) methods 
to group the rules into several subsets so that 
the finite automata could be constructed on 
our experimental platform. We implement the 
grouping method in [15] and generate as fewer 
regular expression subsets as possible in order 
to reduce the matching performance degra-
dation caused by multiple DFAs. For rulesets 
tcp, dotstar and range, the number of subsets 
is 13, 11 and 2 respectively. As can be seen in 
Table II, the grouping method requires enor-
mous pre-processing time, which can be as-
cribed to two parts. First, the grouping method 
needs to calculate the DFA state of every pair 
of regular expression rules to build the con-
volvement relationship matrix. Second, even 

Table II.  Pre-processing time and matching time of different engines on different rulesets (unit: second).
rulesets snort1 snort2 bro tcp dotstar range

NFA
pre-processing 0.127 0.153 0.320 52.244 3.052 1.827

matching 16.897 16.95 122.406 239.075 148.933 71.589

DFA
pre-processing 18.535 26.357 38.985 \ \ \ 

matching 0.072 0.074 0.109 \ \ \ 

mDFA
pre-processing \ \ \ 34,649.657 15,859.416 20,965.463

matching \ \ \ 1.577 1.194 0.361

Hybrid-FA
pre-processing 2.494 3.318 18.024 \ \ \ 

matching 0.699 0.849 2.044 \ \ \ 

D2FA
pre-processing 20.398 30.247 39.917 \ \ \ 

matching 1.163 1.172 0.956 \ \ \ 

BFA

pre-processing 0.168 0.216 0.493 60.719 4.131 2.593

matching (×1) 1.521 1.512 3.620 2.080 2.077 2.053

matching (×8) 0.539 0.463 1.482 1.164 0.946 0.745
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ory, except for the bro ruleset. DFA requires 
the largest memory space to store its data 
structure, which is around 35 times more than 
NFA. D2FA efficiently reduces the size of DFA 
by compressing redundant transitions, and the 
memory usage of bro ruleset is even smaller in 
comparison with NFA. The memory consump-
tion of Hybrid-FA and BFA lies between that 
of NFA and DFA. More importantly, BFA only 
requires about 20MB to 30MB memory for 
large and complex rulesets, while the memory 
usage of DFA and DFA-based engines all ex-
ceed the maximum size of our experimental 
platform. mDFA consumes aournd 500 MB 
to 600 MB memory, which is 15 to 25 times 
more than BFA.

5.3 Optimizations

In this subsection, we evaluate BFA without 
instruction level accelerations to demonstrate 
the benefit brought by our optimizations in-
troduced in Section IV. Figure 2 shows the 
pre-processing time, matching time and total 
time of NFA, BFA without acceleration (BFA-
NA) and BFA on ruleset snort1. The pre-pro-
cessing time of BFA-NA and BFA is almost 
the same, which is a little more than that of 
NFA. For the matching speed, BFA-NA only 
achieves about 15% improvement compared 
to NFA, while BFA is more than 10 times fast-
er than NFA.

In NFA, the time complexity of state tra-
versal is O(n2) [29]. For a Boolean multiplica-
tion between a vector and a matrix, the time 
complexity decreases to O(n2/log(n)) [30]. As 
a result, the Boolean multiplication would be 
faster in theory than the states traversals in 
NFA without hardware acceleration. However, 
the conducted evaluation doesn’t present sig-

portion to the number of subsets generated by 
the grouping algorithm, which doesn’t show 
significant advantage than Hybrid-FA, D2FA 
and BFA. Besides, BFA running with 8 threads 
achieves around 3 to 4 times faster matching 
speed compared to the single thread BFA.

When taking both pre-processing time 
and matching time into consideration, BFA 
consumes the least time to complete regular 
expression matching on this PCAP file, obtain-
ing 3 to 5 times improvement than Hybrid-FA, 
more than 10 times improvement than NFA, 
DFA and D2FA, and around 500 to 4,500 times 
improvement than mDFA for large or complex 
rulesets. For all rulesets which contains no 
more than 300 regular expression rules, NFA 
and BFA are the only two approaches that 
meet the 5 minutes update time requirement 
for some reaction-sensitive security appliance 
such as [2], while BFA achieves significantly 
better matching performance than NFA.

5.2 Memory usage

We also measure the memory usage of differ-
ent matching methods on these rulesets. As 
shown in Table III, NFA has the most compact 
data structure and consumes the least mem-

Table III.  Memory usage of different engines on different rulesets (unit: kb).
rulesets snort1 snort2 bro tcp dotstar range

NFA 162.520 250.882 605.470 4,035.996 3,165.721 3,314.318

DFA 8,835.040 9,988.096 6,689.792 \ \ \ 

mDFA \ \ \ 485,840.786 609,587.440 620,601.645

Hybrid-FA 1,213.421 1,261.441 1,713.247 \ \ \ 

D2FA 264.122 310.149 172.956 \ \ \ 

BFA 1,203.646 1,843.654 4,413.894 30,069.300 23,212.102 24,041.348

0 5 10 15 20

BFA

BFA-NA

NFA

Total time (second)

pre-processing
matching

Fig. 2.  Evaluation of NFA, BFA without accelera-
tion (BFA-NA) and BFA on ruleset snort1 
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from Darpa [31] as the input data in addition 
to the campus network traffic illustrated in 
Section 5.1. These data contain various mali-
cious patterns, leading to more rule matches 
when performing deep inspection. Figure 3 
presents the update abilities of NFA, DFA, 
Hybrid-FA, D2FA and BFA on different rule-
sets and different traffic. Experiments on these 
three types of network traffic (figure 3a, fig-
ure3b and figure 3c) show the similar results. 
It is not surprising that D2FA gets the worst 
update ability since it aims at compressing the 
memory consumption of traditional DFA at 

nificant improvement of BFA-NA over NFA. 
The O(n2) time complexity only occurs in the 
worst case for NFA where every state in NFA 
is in active status, and every state needs to 
access all the other states for a input character. 
In average cases especially when most of the 
network traffic is non-malicious traffic, only a 
small part of NFA states are active. Therefore, 
the advantage of BFA-NA is not notable.

 It can also be concluded that the optimiza-
tions actually contribute to the major boost of 
BFA. On one hand, BFA is a software/hard-
ware co-design to achieve high-speed regular 
expression matching with fast pre-processing, 
On the other hand, without encoding to the 
types of bit vectors and bit matrices, state tra-
versals in NFA or DFA cannot use POPCNT, 
LZCNT, and other bit manipulation methods 
directly in order to improve the performance. 
Therefore, the two ideas of BFA – Boolean 
matrix multiplication and CPU instruction ac-
celeration – work together as a whole to obtain 
a better trade-off among pre-processing time, 
matching time and memory usage.

5.4 Update ability

As far as we know, there is no universal stan-
dard to measure the update abilities of regular 
expression matching engines. It is not enough 
to focus only on the construction time for a 
given ruleset or the matching time for specific 
network traffic. In fact, both of the through-
put provided by a matching engine and the 
pre-processing time before it takes into effect 
need to be considered.

In this paper, a new criterion is proposed to 
quantify how a matching engine is suitable for 
a scenario where regular expression rules are 
frequently updated: the throughput a matching 
engine achieves per unit pre-processing time. 
Formally, for a matching engine Ei, if it could 
obtain Ti throughput in ti pre-processing time, 
then the update ability (UA) of Ei is defined as:

          UA E T t( i i i) =  (3)

In order to measure the update abilities of 
different matching engines, we also use two 
different intrusion detection evaluation traffic 

Fig. 3.  Update abilities of different matching en-
gines on different rulesets and traffic.
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ber of threads increases, the matching speed 
of BFA grows almost linearly. We can also 
observe that the speedup ratios of BFA differ 
for  different rulesets. This is because the tran-
sition tables in BFA for ruleset snort1 and bro 
contain more bits that are set to 1, so the state 
transitions would take more time than snort2. 
Experiments on other rulesets obtain the sim-
ilar results. In summary, BFA achieves an 
almost linear speedup ratio with multi threads 
and could obtain about 2 to 4 times speedup 
on an 8 core platform.

We also compare BFA to ParaRegex, which 
efficiently parallelizes DFA and DFA-based 
methods on multi-core platform. ParaRegex 
improves the matching speed by leveraging all 
CPU cores, but it does not do anything about 
the pre-processing procedure. Figure 5 shows 
the evaluations of the update abilities of both 
BFA and ParaRegex calculated from formula 
(3). Obviously, BFA still achieves about 2 to 
8 times more update abilities compared to 
ParaRegex on the same multi-core platform.

VI. CONCLUSION

Regular expression matching is a fundamen-
tal component of deep inspection. While 
many researches only focus on improving 
the matching speed or reducing the memory 
consumption, the pre-processing of regular 
expression matching engines does not arouse 
much concern. As the network is becoming 
more dynamic than before, the state-of-the-art 
matching engines cannot meet the requirement 
of high-speed matching and fast pre-process-
ing requirement simultaneously. In this paper, 
we propose BFA, a novel matching engine for 
deep inspection, which achieves high-speed 
regular expression matching with fast pre-pro-
cessing.

The core idea of BFA is to transform the 
state transitions in traditional NFA or DFA 
into a multiplication between a bit vector and 
a bit matrix, which is in turn accelerated using 
fast bit manipulation and instruction level par-
allelism provided by modern commodity pro-
cessors. Bitmap compression techniques are 

the cost of slower matching speed and longer 
pre-processing time. DFA method has a slight 
improvement over NFA and Hybrid-FA be-
cause of the leading throughput although DFA 
needs more pre-processing time. Our method 
BFA achieves about 5 times more update abil-
ity compared to DFA, Hybrid-FA and NFA 
and 20 times more update ability compared to 
D2FA with just a single thread. When it scales 
to a multi-core platform, BFA can obtain 
around 3 times more update ability than the 
single thread. These experiments prove that 
BFA has a far better update ability, and thus 
BFA is more suitable for the frequently updat-
ing scenarios in comparison with state-of-the-
art methods.

5.5 Scalability

To test the scalability of BFA, we run BFA 
with 1 to 8 threads on our experimental plat-
form. Figure 4 shows the speedup ratio of BFA 
on rulesets snort1, snort2 and bro, treating the 
single thread BFA as a baseline. As the num-
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also used to reduce the memory usage of BFA. 
BFA is also designed to scale well on multi-
core platform. Besides, a new criterion to mea-
sure the update ability of different matching 
engines is proposed in this paper. Our evalu-
ations demonstrate that BFA achieves 5 to 20 
times improvement compared to existing al-
gorithms, and could get 3 to 4 times additional 
gains on a multi-core platform. By obtaining 
a much better trade-off among pre-processing, 
matching and memory consumption, BFA is 
able to meet the strict update time requirement 
for reaction-sensitive security appliances and 
perform high matching performance for large 
and complex regular expression rules in the 
meantime.

Our future work includes more efficient 
state encoding and accelerating multiplications 
on hardware (such as GPU and FPGA) to fur-
ther improve the matching speed of BFA.

ACKNOWLEDGEMENT

This work was supported by the National Key 
Technology R&D Program of China under 
Grant No. 2015BAK34B00 and the National 
Key Research and Development Program of 
China under Grant No. 2016YFB1000102.

References
[1]  Thompson K. "Programming techniques: Regu-

lar expression search algorithm." Communica-
tions of the ACM 11.6 (1968): 419-422.

[2]  Cisco Email Security Appliance Data Sheet, 
https://www.cisco.com/c/en/us/products/
collateral/security/email-security-appliance/
data-sheet-c78-729751.html/.

[3]  Xu C, Chen S, Su J, Yiu SM, Hui LC. "A survey on 
regular expression matching for deep packet 
inspection: Applications, algorithms, and hard-
ware platforms." IEEE Communications Surveys 
& Tutorials 18.4 (2016): 2991-3029.

[4]  Knuth D E, Morris, Jr J H, Pratt V R. "Fast pattern 
matching in strings." SIAM journal on computing 
6.2 (1977): 323-350.

[5]  Boyer R S, Moore J S. "A fast string searching 
algorithm." Communications of the ACM 20.10 
(1977): 762-772.

[6]  Aho A V, Corasick M J. "Efficient string match-
ing: an aid to bibliographic search." Communi-
cations of the ACM 18.6 (1975): 333-340.

[7]  Wu S,  Manber U.  "A fast  a lgor i thm for 
multi-pattern searching." (1994).



China Communications • February 2019188

Biographies
Zhe Fu, is currently a Ph.D. stu-
dent at Tsinghua University, 
Beijing, China. He received the 
B.S. degree in the Department 
of Automation from Tsinghua 
University, Beijing, China, in 
2013. He has been an IEEE stu-
dent member since 2015. His 

research interests focus on security issues of network 
especially on pattern matching and traffic manage-
ment. Email: fu-z13@mails.tsinghua.edu.cn

Jun Li, is currently Professor of 
Research Institute of Informa-
tion Technology (RIIT), Tsing-
hua University. He is also Exec-
utive Deputy Director of the 
Tsinghua National Lab for In-
formation Science and Tech-
nology. He holds a PhD degree 

in CS from New Jersey Institute of Technology (NJIT), 
and MS and BS degrees in Automation from Tsing-
hua University. He is a member of IEEE since 1996, 
and his research interest is in network security and 
Software Defined Network (SDN). Email: junl@tsing-
hua.edu.cn

CCN), 2017 26th International Conference on. 
IEEE, 2017.

[24]  Yu H. "An improved combinatorial algorithm 
for boolean matrix multiplication." International 
Colloquium on Automata, Languages, and Pro-
gramming. Springer, Berlin, Heidelberg, 2015.

[25]  Lemire D, Ssi-Yan-Kai G, Kaser O. "Consistently 
faster and smaller compressed bitmaps with 
roaring." Software: Practice and Experience 46.11 
(2016): 1547-1569.

[26]  Wu K, Otoo E J, Shoshani A. "Optimizing bit-
map indices with efficient compression." ACM 
Transactions on Database Systems (TODS) 31.1 
(2006): 1-38.

[27]  M Becchi. Regular expression processor, http://
regex.wustl.edu/.

[28]  Bro, https://www.bro.org/.
[29]  Yu F, Chen Z, Diao Y, et al. "Fast and memo-

ry-efficient regular expression matching for 
deep packet inspection." Proceedings of the 
2006 ACM/IEEE symposium on Architecture for 
networking and communications systems. ACM, 
2006.

[30]  Arlazaro Vl, Dinits E A, Kronrod M A, et al. "On 
economical construction of the transitive clo-
sure of an oriented graph." Doklady Akademii 
Nauk. Vol. 194. No. 3. Russian Academy of Sci-
ences, 1970.

[31]  Darpa intrusion detection evaluation dataset, 
http://www.ll.mit.edu/ideval/data/1999data.
html/.


