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Abstract—Regular expression matching has been widely used
in today’s network security systems, where the payloads of
network packets are matched against a set of rules specified
by regular expressions. Due to the increasing number of rules
and the complex semantics of regular expressions, state-of-the-art
regular expression matching techniques hardly meet the demands
of network development. The rapid growth of parallel technology
calls for an efficient parallel regular expression matching method.
In this paper, we propose ParaRegex, a novel approach for
fast parallel regular expression matching with high efficiency
and low overhead. ParaRegex is a framework that implements
data-parallel regular expression matching for finite automaton
based methods. Experimental evaluation shows that ParaRegex
produces a high-performance regular expression matching engine
with low memory overhead and linear speed-up ratio, and obtains
up to 6 times faster processing speed on a commodity multi-core
workstation.

I. INTRODUCTION

Deep Inspection, also known as complete packet inspection

or payload scanning of network traffic, is now playing a vital

role in network security. Given a set of predefined rules,

the payloads of network packets are scanned to identify the

potential security threats, including viruses, intrusions, spams,

data leakage, and so forth.
In the early stages, exact strings are used to characterize

the threat patterns in deep inspection systems. Knuth-Morris-

Pratt (KMP) [1], Boyer-Moore (BM) [2], Aho-Corasick (AC)

[3] and Wu-Manber (WM) [4] are classical algorithms which

are designed to implement fast string matching. However, as

the threat patterns are getting more and more complex, exact

strings can hardly describe security threats.
Due to the rich expressiveness and powerful flexibil-

ity, regular expressions (regexes) become more popular and

have been widely used in today’s deep inspection sys-

tems. For instance, the regular expression “.*seclog [a-

z]{5}\d{4} \d{10}\x2Ekcb” matches any payload consisting

of the string “seclog”, the underscore, five any lowercase

letters, four any numbers, the underscore, ten any numbers,

the dot and the string “kcb”, describing the occurrence of

backdoor Backdoor.Win32.Qakbot.E [5].

To perform regular expression matching, regular expressions

are compiled to Nondeterministic Finite Automaton (NFA) or

Deterministic Finite Automaton (DFA). Either NFA or DFA

has its strengths and weaknesses. NFA has fewer states and

transitions, and its space cost only linearly depends on the

size of regular expression ruleset; thus it is space-efficient.

However, NFA can hardly guarantee the performance in the

worst case. In other words, attackers may maliciously generate

specific network traffic which would significantly degrade the

performance of deep inspection systems [6]. On the other

side, DFA is always fast, and hence becomes the prior choice

for practical time-sensitive applications. But the well-known

state explosion problem makes DFA require excessive memory

consumption in practice, especially when the ruleset is large.

The booming development of network technology presents

serious challenges for regular expression matching. First, the

size of rulesets in practical use keeps increasing. Second, the

semantics of regular expressions in the rulesets are getting

more and more complex. As the network traffic bandwidth

grows rapidly, state-of-the-art regular expression matching

techniques hardly meet the demands and have become the

bottleneck for high-performance content-aware network de-

vices. Parallel computing becomes more and more popular

and important with the growth of multi-core technology,

which produces new ideas to solve the performance bottle-

necks of regular expression matching by fast and efficient

parallelization. However, today’s parallel implementations of

regular expression matching are either brute-force or with huge

overhead on practical datasets.

This paper makes the following contributions. First, the

states aggregation phenomenon in DFA states transitions is

discovered, which brings hope for high-efficiency and low-

overhead parallelization of regular expression matching. Sec-

ond, we propose ParaRegex, a framework that implements

data-parallel regular expression matching on existing Finite

Automaton (FA). Third, two optimizations for ParaRegex,

called Smart Split and Quick Start, are designed to further

lower the overhead and accelerate the matching speed. Finally,

experiments on real-world rulesets and network traffic are

conducted, and the results show that ParaRegex can achieve

up to 6 times faster processing speed compared to sequential

implementations on a workstation with an Intel Core i7-4790

CPU.

The rest of the paper is organized as follows. Section II

presents our motivations, and Section III describes the design

details and two optimization methods of ParaRegex. Section

IV evaluates the performance of ParaRegex and compares it to

some state-of-the-art solutions. Section V states related work,
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Figure 1. NFA and DFA of regular expression “ab.*cd” and “ef.*gh”

and Section VI concludes with a summary and future research

directions.

II. BACKGROUND AND MOTIVATION

A. Regular Expression Matching and Finite Automaton

Regular expression was first proposed in [7]. It consists of a

sequence of ASCII characters and meta-characters. The meta-

character, including quantification (such as “ . ” and “ * ”),

position (such as “ ˆ ” and “ $ ”) and character class, gives

regular expression the power of representing a set of exact

strings instead of a single exact string.

Nondeterministic Finite Automaton (NFA) and Determinis-

tic Finite Automaton (DFA) are two equivalent descriptions of

regular expressions. Both of NFA and DFA are 5-tuples ({Q,

Σ, δ, q0, F}), where Q denotes a finite set of states, Σ denotes

a finite set of input symbols, δ denotes a transition function, q0
denotes the start state in Q, and F denotes a set of accepting

states. The only difference between NFA and DFA is that in a

DFA the transition function δ only takes one state and returns

a single state for an input symbol, while in an NFA δ may

return multiple states.

Figure 1 shows the NFA and DFA of the regular expression

“ab.*cd” and “ef.*gh” (some transitions in DFA are omitted).

As we can see from the figure, NFA has succinct data

structures and hence small size. For N regular expressions

with an average length of L, the space complexity of NFA

is O(N × L). Nevertheless, the space-efficiency of NFA is

at the cost of slow running speed, where a mass of state

transitions need to be processed concurrently for each input

character. For example, under the circumstance that state 3 is

active and input character is c, both state 3 and state 5 will
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Figure 2. Example of enumeration methods of regular expression matching

be active. Therefore, two states need to be processed for next

input character. In the worst case, for N regular expressions

with an average length of L, the time complexity of NFA is

O(N ×L2). Compared with NFA, DFA always requires only

one state transition lookup per input character, so the time

complexity of DFA is O(1). However, DFA often suffers from

the well-known state explosion problem, that is, the size of a

DFA often grows exponentially along with the increase of the

regular expression set size, and the space cost in worst case

is O(|Σ|N×L) (where |Σ| is the size of the alphabet) [8].

In spite of the poor space complexity of DFA, the rela-

tively high matching efficiency and stable throughput that is

independent of network traffic and rulesets enable DFA to

provide wire-speed and deterministic processing rate, which

could meet the requirements of real-time deep inspection. For

this reason, our work is focused on the parallel implementation

of regular expression matching using DFA for deep inspection

applications.

B. Parallel Regular Expression Matching

An intuitive approach to parallelizing regular expression

matching is to divide the input data into multiple blocks and

match each data blocks separately. However, the strong data

dependency of each block makes it hard to obtain the correct

final matching result. Taking two divided data blocks as an

example, the start state of the DFA for the second block is

unknown until the first block finishes the matching process. If

we want to match these two blocks in parallel and regard each

block as independent input data, one situation could happen

that one part of an attack pattern is in the first data block

and the other part is placed into the second data block. As a

result, this attack pattern would be missed, which is a critical

and unaccepted error for the deep inspection systems.

There have been several proposals on the parallel matching

of regular expressions. One way is to speculate or guess

the start state of each data block. After the previous data

block finishes matching process, the algorithm needs to check

whether the predicted DFA start state of the following data

block is identical to the correct final state of the previous one.

It not, the following data block needs to be re-matched with the

correct start state. Frequent re-matching of divided data block

would degrade the performance, in which case the throughput

cannot be guaranteed. Thus, speculation based methods are

not suitable for regular expression matching in deep inspection

systems.



Algorithm 1: Enumeration Methods

Input : DFA D = {Q, Σ, δ, q0, F}, Input Data C =

c1,1c1,2...c1,m1
c2,1...c2,m2

...cn,1cn,mn
, number

of threads n
Output: qfinal that q0

D
−→
C

qfinal

1 // mapping and matching procedure

2 foreach i ∈ [1...n] parallel do

3 Si ← Q // sub-result of block i
4 for j = 0 → mi do

5 foreach q ∈ Si do

6 Si[q]← δ(Si[q], cij)
7 end

8 end

9 end

10 // reducing procedure

11 q
′

← q0
12 for i = 1 → n− 1 do

13 q
′

← Si[q
′

]
14 end

15 qfinal ← Sn[q
′

]

Another approach is the enumeration method, i.e., enu-

merating all the transitions from every possible start state

of each data block simultaneously [9], [10], [11]. Figure 2

and Algorithm 1 illustrate the idea of existing enumeration

methods of parallel regular expression matching. Similar to the

MapReduce model [12], the procedure can be divided into 3

steps: map, match and reduce. Starting from the set of all start

states, each thread computes the sub-result based on the input

of each data block independently, and then the sub-results of

all threads can be reduced by joining them in sequential, to

obtain the final matching result.

Obliviously, the huge overhead of this approach introduces

significant computation load, making it not an efficient solu-

tion for practical use in deep inspection systems. Let D be

the DFA, |Q| be the number of states of the DFA, m be the

size of the input data, and n be the number of threads. The

time complexity of mapping and matching procedure of Algo-

rithm 1 is O(|Q|m/n), and the time complexity of reducing

procedure is O(|Q|n) when a sequential reduction is used [9].

This reveals that parallel implementation of regular expression

matching based on enumeration fails to obtain higher matching

performance than the non-parallel implementation when the

DFA is large (i.e., m≫ n).

C. States Aggregation in DFA Transitions

However, the scenario will be quite different when taking

the input data into consideration. The DFA states that need

to be traversed from are defined as active states. In a real-

world situation, the simultaneously active states tend to move

to very few states after reading any input character, which

means that the number of concurrent active states is likely

to decrease sharply under several arbitrary input characters.

We define the reduction of the number of active states as
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Figure 3. aggregation phenomenon of DFA states on real-world traffic

Table I
AVERAGE NUMBER OF ACTIVE STATES FOR FOUR DIFFERENT RULESETS

Ruleset bro50 bro217 snort24 snort34
Number of regexes 50 217 24 34

DFA states 667 8094 8630 10212
after any 1 input 4.60 37.63 62.42 78.70
after any 2 input 1.02 5.17 19.19 31.69

states aggregation. Figure 3 shows a schematic of the states

aggregation phenomenon in the DFA constructed from regular

expressions from Snort [5] ruleset along with the input traffic

dumped from our campus network. In the beginning, all DFA

states are set to active (denoted graphically by black circles

in Fig. 3). After reading input character, the states move

according to the transition function δ. As can been seen, state

3, state 5, state 6 and state 7 all move to state 6, and state 8

to the last state all move to state 10 upon reading the input

character c0. After 5 characters, only state 4 is active, and the

number of active states remains one in the following matching

procedure.

For snort24, a regular expression ruleset which contains 24

regular expressions, the number of all active states decreases

from 8630 to 18 after reading just one input character from the

dumped campus network traffic. To further support this notion,

four different rulesets are tested with all possible inputs which

consisted of any one or two input characters from the alphabet.

To put it another way, we treat all 256 characters from ASCII

Character Set [13] as one-character input, and 65536 various

combinations of any two characters as two-character input.

The average numbers of active states after all one-character

and two-character input are counted in Table I. As shown in

Table I, the average number of active states after one arbitrary

input character is less than one percent of the number of total

DFA states, and become even less after two arbitrary input

characters.

The nature of DFA offers the theoretical basis for this

observation. DFA only activates one state and requires exactly

one state traversal per input character. As a result, the number

of active states after one input character would be no more than



that before. Mathematically, we have the following Theorem

1.

Theorem 1. Let Q0 be the set of all states of DFA D, Qm be

the set of active DFA states after reading m input character

when all DFA states are active as start states, then ∀ 0 ≤ i <
j ≤ m, we have |Qi| ≥ |Qj |.

Proof. Assume that ∃ 0 ≤ i < j ≤ m, s.t. |Qi| < |Qj |. Then

there must ∃ k, i ≤ k < k + 1 ≤ j, s.t. |Qk| < |Qk+1|.
This means, there must exist at least one DFA state, e.g. q̂,

s.t. |δ (q̂)| > 1. This contradicts the fact that the transition

function δ of DFA only takes and returns a single state and

thus contradicts the assumption.

Theorem 1 lays an essential theoretical foundation for the

DFA states aggregation. Furthermore, the profiling of DFA

transitions and input network traffic in real-world use also

contributes to the aggregation of DFA states. For the DFA

compiled from snort24, the average distinct transitions for

each state is 14.18, and this number falls to only 3.29 for

English letters, numbers and common symbols in the input

traffic. And on average 90.8% of the states move to the same

next state under the circumstance of evenly distributed input.

On the other side, the character which leads to transitions to

seldom-active states is extremely rare in real-world network

traffic. This means that the set of active states would aggregate

rapidly for real-world traffic.

Based on the analysis above, we propose a novel structure

to implement fast parallel regular expression matching with

low overhead in the next section. Two additional optimization

techniques are suggested to further improve the matching

efficiency.

III. DESIGN AND OPTIMIZATION

A. Design Details

1) MSU and ParaRegex: Depending on the state aggre-

gation phenomenon in the DFA state traversals, we propose

ParaRegex, a framework that implements low-overhead and

high-efficiency parallel regular expression matching. Middle

State Unit (MSU) is the fundamental structure of ParaRegex.

MSU consists of two parts: a state id and a mapping vector.

The state id of MSU in ParaRegex is identical with the original

state id in a DFA, and the mapping vector is a bit vector that

maintains mapping relationships between original start states

and the state of this MSU. Similar to DFA, ParaRegex is

defined formally as the following:

ParaRegex has 5-tuple {M , Σ, δ, M0, FM}, consisting of

• M : a finite set of MSUs

• Σ : a finite set of input symbols called the alphabet

• δ : M × Σ→M : a transition function

• M0 ⊆M : a set of initial or start MSUs

• FM ⊆M : a set of accepting MSUs

The design of MSU gives ParaRegex the power of efficient

regular expression matching in parallel. ParaRegex performs

the following steps as described in Algorithm 2. First, the input

data is split into n data blocks, where n matches the number

of threads that a platform supports. Second, all threads start

with the MSU set M0, and traverse the input character of

each data block independently. When the task of each thread

is completed, the number of MSUs will decrease to only one

or other rather small number due to the state aggregation.

Finally, all MSU sets of all threads are reduced to obtain

the final result. Next part in this section will dig into the

technical details of mapping, matching and reducing procedure

of ParaRegex.

Algorithm 2: ParaRegex implementation

Input : ParaRegex P = {M , Σ, δ, M0, FM}, input C =

c11c12...c1m1
c21...c2m2

...cn1cnmn
, number of

threads n
Output: qfinal

1 // mapping and matching procedure;

2 foreach i ∈ [1...n] parallel do

3 if i == 1 then

4 Mi ← q0
5 else

6 Mi ←M0

7 end

8 for j = 1 → mi do

9 foreach msu ∈ Mi do

10 msu← δ(msu, cij)
11 end

12 merge MSUs with the same msu.id
13 end

14 end

15 // reducing procedure;

16 msufinal ←M1

17 for i = 2 → n do

18 foreach msu ∈ Mi do

19 if msufinal.id && msu.mapping 6= 0 then

20 msufinal.id← msu.id
21 break

22 end

23 end

24 end

25 qfinal ← msufinal.id

2) Initialization: The operation of mapping DFA state to

MSU only have to be executed when all MSUs are initialized.

In a DFA with |Q| states, state k (0 ≤ k < |Q|) is attached

to a |Q|-bit vector, in which the kth bit is set to 1 and others

are 0. After initialization, ParaRegex has a set of |Q| MSUs,

instead of |Q| DFA states. It must be noted that the first set

only has one MSU because the start state of the first block

is determined, which is definitely q0. Line 3 to line 7 of

Algorithm 2 reveals the initial mapping procedure, where M0

denotes the set of MSUs corresponding to all DFA states, and

Mi (1 ≤ i < n) denotes the set of MSUs of data block i.
Obviously, we have the following Theorem 2.

Theorem 2. For a set of MSUs M = {msu0,msu1, ...,msui,
...,msun−1}, 0 ≤ i < n, we have

⋃n−1

i=0
msui.mapping = 1
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and ∀ 0 ≤ i < j < n,msui.mapping ∩msuj .mapping = 0.

Proof. According to the definition of MSU, every bit of value

1 in the mapping vector represents a unique DFA state, so the

union of all mapping vector is a bit vector where all bits are

1. On the other hand, no DFA state can move to more than

one state, thus the intersection of any two mapping vectors is

always 0.

3) Matching: Line 8 to line 13 of Algorithm 2 shows

the matching procedure of each data block in ParaRegex.

Each thread corresponds to a set of MSUs. In these sets,

every MSU’s state moves to the next according to the tran-

sition function. After all MSUs in one set complete state

transitions, the MSUs with the same state id are merged. In

other words, for MSU msui and msuj , 0 ≤ i, j < n, if

msui.id == msuj .id, then the mapping vector of merged

MSU is msui.mapping && msuj .mapping. The merging

process can also be performed using a hash-based method, in

order to reduce the merge complexity from O(n2) to O(n).
We have the following Theorem 3, which indicates the similar

aggregation property of MSU.

Theorem 3. Let M0 be the set of MSUs, Mm be the set of

MSUs after reading m input character, then ∀ 0 ≤ i < j ≤ m,

we have |Mi| ≥ |Mj |.

Proof. Since the state in MSU is identical to the original DFA

state, this theorem can be derived directly Theorem 1.

4) Reducing: The reducing operation is executed only after

all threads complete the matching process. Line 16 to line 24

of Algorithm 2 explains a sequential reduction method. The

msu.state field can be transformed into another |Q|-bit vector,

where the only msu.stateth bit is set to 1 and others are 0.

At first, the only MSU in M1 is denoted as msufinal. From

the second set, if the intersection between msufinal.id and

one msu.mapping from the set of MSUs is not 0, then it

means that starting from msufinal.id, the DFA state would

finally move to msu.id for this input data block. Therefore,

the msufinal.id becomes msu.id as a combinational result.

Theorem 4 below assures that there is one and only one msu
from the set that meets the condition in line 19 of Algorithm

2. In the end, the final msu is obtained from which we can

get the matching result.

Theorem 4. Let msufinal be the combinational matching

result of input data block B0, ..., Bk, 0 ≤ k < n, Mk+1 be the

set of MSUs corresponding to input data block Bk+1, then ∃!
msu ∈ Mk+1 s.t. msufinal.id && msu.mapping 6= 0.

Proof. Assume that 6 ∃msu ∈Mk+1, s.t. msufinal.id &&
msu.mapping 6= 0, i.e., ∀msu ∈Mk+1, msufinal.id &&
msu.mapping == 0. Let m = msu.state, because

only mth bit in msu.state is 1 and others are 0, this

means that ∀msu ∈ Mk+1, the mth bits are 0. As a

result,
⋃

msu∈Mk+1
6= 1, which contradicts Theorem 2. On

the other side, assume that ∃ two or more msu ∈ Mk+1

s.t. msufinal.id && msu.mapping 6= 0, i.e., ∃ msui and

msuj , 0 ≤ i, j < n, the mth bits of msui.mapping and

msuj .mapping are 1, so msui.mapping∩msuj .mapping 6=
0, which contradicts Theorem 2.

Figure 4 and Figure 5 explain how ParaRegex works in

practice. As shown in Fig. 4, there are two input data blocks

Bk and Bk+1. Initially, each original DFA state corresponds to

an MSU, and the mapping vector of the MSU indicates which

state has been traversed from. The first bit of the first MSU’s

mapping vector is set to 1 while others are set to 0, denoting

that this MSU derives from DFA state 0. After reading the

input character ck,1 from the input data block Bk, state 0,

state 2 and state 3 all move to state 0, so the first, third and

fourth MSU are merged into one MSU whose state id is 0 and
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Figure 6. Example of the data partitioning optimization

mapping vector is the union of MSU 0’s, MSU 2’s and MSU

3’s mapping vectors. The quick OR operations of bit vectors

accelerate the merging of MSUs.

Once all threads have completed their tasks, the set of MSUs

corresponding to each data block would be reduced. Figure 5

illustrates a fast reducing example. The state in each MSU

is encoded to a bit vector named state vector, and then the

previous MSU’s state vector performs an AND operation with

the latter MSU’s mapping vector. If the result of the AND

operation is 1, the two MSUs are to be reduced into one which

is composed of the previous MSU’s mapping vector and the

following MSU’s state vector. Benefiting from the fast OR

and AND operations of bit vectors, the processing of multiple

MSUs can be very efficient.

Accepted rules can be recorded at line 10 in Algorithm

2 to ensure that the same and complete information includ-

ing the matched rules and positions would be obtained by

ParaRegex as sequential implementations do. It must be noted

that ParaRegex does not modify or create new DFAs, but just

provides a general mechanism that is orthogonal to other work

such as D2FA [14]. In other words, state-of-the-art work on

regular expression matching can be easily parallelized using

ParaRegex by replacing original states with MSUs or just

attaching a mapping vector to the original state. Section IV

will present the experimental results of both DFA and D2FA.

B. Optimizations

In this section, the basic ParaRegex method is optimized for

more efficient implementation. One optimization is to split the

input data more smartly for faster aggregation speed, and the

other optimization is to reduce the memory consumption at

the start stage of ParaRegex.

1) Smart Split: Splitting the input data equally seems to

be the fairest way for balancing each thread’s load. However,

for a given DFA, the state aggregation situation varies with

the input character. A smart split position would improve

the aggregation speed and hence decrease the computation

complexity.

To optimize the data partitioning for faster aggregation, we

define the Aggregation Factor (AF) for each input character.

Starting from all |q| states of a DFA, the simultaneously active

states number decrease to |q′| after reading character c, so the

Aggregation Factor of character c is defined as

AF (c) = 1− |q′|/|q|

It is obvious to know that larger AF indicates faster

aggregation ability. Since the alphabet and DFA are given

before the matching procedure, the computation of AFs of all
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characters can be performed in a preprocessing stage. When

splitting input data, let pos denotes the equally split position,

margin be an adjustable parameter, then the character with

the biggest AFs in the range [ pos−margin, pos ] suggests

a better split position.

Figure 6 shows a simple example of the Smart Split. The

AF of character cm+i is the largest among the characters from

cm+2 to cn−j , so split the input data right before cm+i is

a smarter choice. Because the size of margin is ignorable

compared to the size of input data block, the load for each

thread stays nearly the same while better aggregation abilities

are gained.

2) Quick Start: As mentioned previously, the huge over-

head caused by parallelization is only at the start stage of

ParaRegex. After 2 or 3 characters, the amount of MSUs would

decrease to a very small number which brings negligible extra

memory consumption. To avoid the expensive overhead, an

index table of the first few start states which consists of all

possible combinations of any k characters could be built in

advance. Then each thread first reads k input character from

the data block and find the corresponding result of active

MSUs directly.

As with Smart Split, the Quick Start optimization can be

also accomplished in a preprocessing stage. For a DFA with

|Q| states, let k be the number of pre-computed characters, so

the extra space for the index table is |Q| × Σk, which could

save k × |Q|
2

memory consumption. It’s always a trade-off

how to choose the right k: larger k results in quicker start

for ParaRegex, but the extra memory consumption would be

even more than the basic ParaRegex implementation without

Quick Start optimization. Empirically, k of 1 or 2 will be

an appropriate choice to relieve the overhead at the start

stage. Section IV-B shows the experimental result of this

optimization on memory usage reduction when k = 1.

IV. EVALUATION

In this section, we conduct a series of experiments to

evaluate the performance of ParaRegex and the optimizations.

Experiments are performed on a workstation with Intel Core

i7-4790 CPU (4 cores with 8 threads). Regular Expression



Figure 8. Speedup ratios of ParaRegex on different network traffic and rulesets

Table II
DARPA DATASET USED IN THE EVALUATION

Traffic Mon Tue Wed Thu Fri
Size (MB) 140 125 168 146 135

Table III
MEMORY CONSUMPTION OF DFA, PARAREGEX WITHOUT AND WITH

QUICK START (QS) OPTIMIZATION

Number of input char 1 2 3 4 5
DFA (MB) 10.18 10.18 10.18 10.18 10.18

ParaRegex w/o QS (MB) 19.49 10.20 10.19 10.19 10.19
ParaRegex w/ QS (MB) 10.46 10.20 10.19 10.19 10.19

Processor [15] is used as the basic implementation of regular

expression matching. Four rulesets picked from open source

software Bro [16] and Snort [5] are tested (shown in Table

I), while the network traffic from Darpa [17] is treated as the

input data (presented in Table II).

A. Computational Overhead

We compare ParaRegex to general enumeration approaches

[9], [10], [11] that enumerate all the states of the DFA during

the matching process. Figure 7 shows the matching time of

ParaRegex and the enumeration approach on different rulesets

and traffic. By introducing the MSU structure, ParaRegex

takes full advantage of the states aggregation property along

with efficient bitwise operation. As a result, the processing

speed is at least one to two orders of magnitudes faster

than that of enumeration approach. Besides, the processing

speed of enumeration approach falls sharply as the DFA states

grow (say the DFA of bro50 has 667 states and the DFA

of bro217 has 8094 states). In contrast, ParaRegex shows

excellent scalability since the active states will aggregate to a

small amount in most cases, no matter how large the DFA is.

B. Memory Consumption

Table III demonstrates the evaluation result of memory con-

sumption of DFA, ParaRegex, and ParaRegex with the Quick

Start optimization. Since the memory usage by ParaRegex is

positively related to the number of active MSUs, the total

consumption would decrease dynamically with the number of

input characters. As shown in Table III, for the ruleset snort24,

the memory usage is constantly 10.18 MB for traditional DFA

method. For the basic ParaRegex implementation, the initial

memory consumption is 19.49 MB, more than 90% larger than

the DFA. After reading 2 characters, the usage of memory

reduces to 10.20 MB, nearly the same as the size of DFA.

Optimized by Quick Start (k = 1), the memory consumption

of ParaRegex at the start stage is only 10.46 MB (index

table included), only 2.7% larger than the DFA. Considering

with the size the input traffic, the memory usage overhead of

ParaRegex is negligible.
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Figure 9. Evaluation on the Smart Split optimizations of ParaRegex

C. Speed-up Ratio

To evaluate the performance of ParaRegex, we conduct

a series of experiments using different numbers of threads,

and treat the DFA matching method in Regular Expression

Processor [15] as a baseline. Figure 8 shows the speedup ratios

of ParaRegex on different network traffic and rulesets. As the

number of working threads increases, the matching speed of

ParaRegex grows and maximum speed is obtained when 8

threads process simultaneously in parallel.

In Fig. 8, the trends of speedup ratios stay nearly the same

on different input traffic, which indicates the performance of

ParaRegex to be robust on various input data. One noticeable

difference in Fig. 8 is that the speedup ratio on bro50 is

higher than other rulesets. We look deep into the active states

that need to be traversed in each thread and find that the

active states aggregate to only one rapidly when the ruleset

is bro50, and in the cases of other rulesets the active states

aggregate to two, which slows down the processing speed. It

may be ascribed to the fact that the number of DFA states of

bro50 is smaller than the others, so the active states number is

more likely to aggregate to one for bro50. Another difference

is that the speed-up ratio drops slightly when 5 or more

threads are used. This may be due to the limitation of hyper-

threading technology [18], where the sharing of cache and

CPU resources influences the performance.

More experiments on other rulesets and traffic draw the

similar conclusion that ParaRegex produces a fast matching

engine with speeds of up to 4 times with 8 parallel threads

compared to the original sequential implementation.

D. Data Partitioning Optimization

The Smart Split optimization method is proposed in Section

III-B, aiming at gaining faster aggregate speed and decrease

the computation complexity. Figure 9 shows the average pro-

cessing time of ParaRegex using different numbers of threads

with and without the data partitioning optimizations. Two

groups of experiments are conducted on five Darpa traffic,

and the margin parameter is set to 20 in the evaluations.

The experimental results suggest that about 15 percent of the

processing time can be saved by introducing the Smart Split

optimization.
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Figure 10. Evaluation of ParaRegex on D2FA

E. Experiments on D2FA

As mentioned before, ParaRegex is a framework that could

efficiently parallelize existing approaches on regular expres-

sion matching. In this paper, we parallelize an improved D2FA
method [19] and Fig. 10 shows the power of ParaRegex.

When 8 threads are used, the processing speed has increased

by nearly 3 times on the rulesets of bro217, snort24 and

snort34, and up to nearly 6.6 times on the ruleset of bro50.

Since the improved D2FA method accentuates the locality

behavior of the DFA traversal operation, higher speedup ratio

is obtained on ruleset bro50. However, the improvement of

cache utilization fails to significantly affect the throughput of

ParaRegex when the rulesets are large.

V. RELATED WORK

Several techniques for parallel computation of regular ex-

pression matching have been proposed. Enumeration methods

[9], [10], [11] enumerate all the states of the DFA and

then associate each part’s results. However, the overhead of

this kind of methods is too high, making these methods

hardly applicable for practical use. SFA (Simultaneous Finite

Automaton) [20] extends an automaton so that it involves the

simulation of transitions. SFA has a good property of paral-

lelism, however, the constructing time of complex rules for

SFA is unbearable. For the rule “([0-4]{500}[5-9]{500})*”, it

will take more than 1000 times longer to construct an SFA

than DFA. Therefore, it is also unpractical for real-world use.

PaREM [21] optimizes the possible initial states by excluding

all the states that have no outgoing or incoming transitions for

specified characters, but it suits for simple regular expressions

and will become less efficient for large-scale rulesets.

Regular expression grouping methods [22], [23] divide

the given regular expression into several groups to construct

multiple automata, with the purpose to deflate the space con-

sumption of DFA. Then each automaton is processed either in

sequential or in parallel. Unlike these grouping based methods,

ParaRegex splits the input data into a certain number of data

blocks and traverses each block concurrently.

Hardware-based techniques [24], [25], [26] which use

FPGA (Field-Programmable Gate Array) or TCAM (Ternary



Content Addressable Memory) have advantages in the parallel

implementation using pipelines. However, the small size of on-

chip memories limits the practical deployment of large-scale

rulesets. Worse more, the high cost and big power consump-

tion make FPGA and TCAM devices expensive for regular

expression matching. With full utilization of the parallelism

on a general-purpose platform, ParaRegex is more flexible and

cost-efficient compared to these hardware-based methods.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present ParaRegex, a novel approach to

achieve efficient parallelization of regular expression matching

for Deep Inspection. Based on the aggregation phenomenon of

DFA States in the matching process, ParaRegex uses MSUs to

implement low-overhead and high-efficiency parallel matching

engine. Moreover, two optimizations named Smart Split and

Quick Start are proposed to further accelerate the matching

speed and relieve the overhead. The experimental results on

practical rulesets from Bro [16] and Snort [5] and real-world

network traffic from Darpa [17] draw the conclusion that

ParaRegex nearly obtains linear speedup ratios and up to

4 times speedup with 8 parallel threads compared to the

original sequential implementation. In comparison with the

enumeration approach, the processing speed of ParaRegex is

at least one to two orders of magnitudes faster. We also apply

ParaRegex to D2FA and gain more than 6 times speedup.
Our future work will focus on the following respects.

First, the procedure of mapping, matching and reducing of

ParaRegex suits distributed computing platforms like Hadoop

[27] or Spark [28] naturally, so experiments on large-scale

regular expression matching on these platforms are expected.

Second, multiple active MSUs that would slow down the

processing efficiency of ParaRegex can be parallelized by

specific hardware. Third, the bit vector used in MSU could

be compressed to further reduce the memory overhead. We

hope all these platforms and algorithms can effectively work

together to achieve efficient and high-performance regular

expression matching in parallel for Deep Inspection.
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