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Abstract—Rate limiting is a fundamental function for 

managing quality of network service. Unfortunately, the poor 

scalability of today’s rate limiting approaches restricts the 

performance on multi-core platform. In this work, we present 

CORAL, a lock-free framework that effectively implements high 

performance rate limiting on multi-core platform. The key idea is 

that CORAL uses virtual class queues to isolate simultaneous 

access to the same queue by different CPU cores and two 

additional parameters to synchronize the QoS constraints among 

multi cores. Experimental results show that this lock-free design 

obtains around 50% higher limiting rate compared to existing 

locking method, and shows great scalability and stable 

performance over different number of cores and packet sizes. 
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I.  INTRODUCTION 

QoS (Quality of Service) functions, which includes 
guarantees of latency and minimum bandwidth, rate limiting, 
bandwidth shaping and sharing for different flows, are playing 
an important role in quantitatively measuring the quality of 
service and providing differentiated services for network flows. 
As a fundamental part of QoS, rate limiting is used to control the 
rate of traffic at the input and output side. A router could smooth 
out the traffic by limiting the rates of different flows, and a 
firewall could perform access control by limiting the rate of 
specific incoming flows. 

Nowadays, rate limiting is performed by either hardware or 
software. Modern NICs support multiple hardware transmit 
queues. When transmitting a packet, a request will be sent to the 
NIC by the OS to notify the arrival of the packet, and an arbiter 
is used by the NIC to compute the fetching order of packets from 
different ring buffers. The NIC first looks up the physical 
address of the packet, and then initiates a DMA (Direct Memory 
Access) transfer of the packet contents to its internal packet 
buffer. Finally, a scheduler decides whether or when the packet 
will be transmitted. 

Hardware based rate limiting ensures low CPU overhead and 
high accuracy. At the same time, storing masses of per-class 
packet queues and ring buffers for each queue on the NIC may 
result in poor scalability. For example, if 4,000 queues are used 
in the NIC and each queue stores 15KB packet data (about 1,000 

packets), it would consume about 60 MB of SRAM of the NIC, 
which is too expensive for commodity NIC [1]. Besides, the 
widespread use of containers produces larger scale of network 
flows. Current NIC hardware only supports 8-128 rate limiters 
[2], which carries significant limitations for fine-grained rate 
limiting and other QoS applications in these scenarios. 

Most operating systems have already supported software 
based rate limit function. As the foundation of modern network, 
Linux offers a very rich set of tools for managing and 
manipulating the transmission of packets. For example, TC 
(Traffic Control) is a user-space utility program used to 
configure Linux kernel packet scheduler. It uses QDisc 
(Queuing Discipline), which can be configured with traffic 
classes, to enforce flexible and scalable traffic control policies. 
But software based rate limiting implementation usually 
encounters the problem of high CPU overhead due to lock 
contention and frequent interruption. Previous experiments [3] 
show that software based rate limiting implementation 
consumes about 5 times more kernel CPU utilization of that by 
hardware based methods. 

With the rapid development of SDN (Software Defined 
Network) and NFV (Network Function Virtualization), more 
and more network functions are virtualized and implemented on 
general-purpose processor platform. While allowing flexible 
deployment and live migration, the poor performance of these 
implementations has become a bottleneck for supporting high 
bandwidth network traffic processing. Recently, the 
development of data plane technology such as DPDK (Data 
Plane Development Kit) [4] and fd.io [5] bring new possibilities 
into the implementation of high performance QoS functions. 
However, it is still a challenge to effectively map queues on 
multi cores while reducing overhead as much as possible. 

In this paper, we present CORAL, a scalable multi-Core 
lOck-free RAte Limiting framework. Specifically, we introduce 
virtual QoS class queue to isolate simultaneous access to the 
same queue by different CPU cores, and use two additional 
parameters demand rate and supply rate attached to each virtual 
class queue to synchronize the QoS constraints among multi 
cores. Experimental results show that compared to existing 



multi-core rate limiting implementations, around 50% higher 
limiting rate can be achieved with CORAL. In addition, CORAL 
shows great scalability as the number of CPU cores increases. 

This paper is organized as follows. Section II gives the 
overview of related work. In Section III, we analyze the 
shortcomings of state-of-art multi-core rate limiting 
implementations, and propose the design of CORAL. Section IV 
discusses the experimental results of CORAL, and compares the 
results with the existing method. Finally, Section VI concludes 
the paper. 

II. RELATED WORK 

In [6, 7], generic token bucket management methods for QoS 
requirements are introduced. The tokens normally represent a 
single packet or a unit of predetermined bytes, and are added into 
a bucket at a fixed rate. The bucket is checked to see whether it 
contains sufficient tokens when a packet arrives. If the bucket 
contains enough tokens that packet needs, the packet is passed 
and several tokens (usually equivalent to the length of the 
packet) are removed. Otherwise, no tokens are removed from the 
bucket, but the packet is dropped or marked as non-conformant 
for further processing. Leaky bucket is another algorithm used 
to limit the rate of network traffic. Unlike token bucket 
algorithms, leaky rate algorithm deliver packets at a constant 
rate, and it lack the power of handling bursty traffic. Hierarchical 
token bucket (HTB) [8] algorithm allows for complex and 
granular control over traffic. It classifies traffic in a multilevel 
hierarchy, based upon a variety of parameters such as IP 
addresses, priority or interface. Nevertheless, these generic 
algorithms are not optimized for multi-core scenarios, thus don’t 
scale well when the number of CPU cores is increasing. 

Recently, quite a number of researches propose more 
advanced rate limiting solutions for specific situations. 
Gatekeeper [9], and EyeQ [10] both limit the rate between each 
VM (Virtual Machine) pair to guarantee bandwidth for multi-
tenant datacenter network. QCN [11] and DCTCP [12] use rate 
limiters to reduce congestions in data centers where bursty 
correlated traffic coupled with small buffers often result in poor 
application performance [13]. All these methods take advantage 
of rate limiting, but none of them focus on solving the 
performance bottleneck of rate limiter itself. In addition, with 
growing number of VMs and flows in data centers and 
virtualized network environment, the number of limiters is 
expected to increase, bringing more challenges to high 
performance rate limiting. 

In [14] a hardware priority queue architecture for link 
scheduling in high-speed switches is presented, guaranteeing 
QoS requirements in high speed networks. ServerSwitch [15] 
proposes a programmable NIC for configurable congestion 
control management. SENIC [1] offloads rate limiting to 
NetFPGA and leave the rest task to software, aiming at reducing 
CPU load while supporting thousands of rate limiters. However, 
all of these work rely heavily on specific hardware, and will lose 
scalability on general-purpose processor platform. 

III. DESIGN 

Receive-Side Scaling (RSS) is a network feature of NIC 
which enables efficient distribution of input packets. With the 
support of RSS, network receive processes are distributed across 
several hardware-based receive queues, which allows multiple 
processing cores process network traffic simultaneously and 
relieve bottlenecks in receive interrupt processing caused by 
overloading a single core. RSS is the fundamental technology of 
high performance packets processing on multi-core platform. In 
this section, we will first analyze the disadvantages of current 
multi-core rate limiting methods, and then present a new 
scalable lock-free rate limiting framework to overcome these 
shortcomings. 

A. State-of-art Methods 

Figure 1 shows the situation where a single core takes 
responsibility of packets receiving and rate limiting. After 
received from the NIC, the packets are classified by the CPU 
core and sent to several queues of various QoS classes for fine-
grained traffic control. When it extends to multi-core scenario, 
every CPU core receives packets from the NIC and uses its own 
classifier to send packets to different QoS classes. However, 
since traffic distribution by RSS is determined by the NIC driver, 
rather than the classifier of each CPU core, packets to different 
CPU cores may be classified as the same QoS class and sent to 
the same queue again. This will lead to simultaneous reading and 
writing operation to one queue from different CPU cores as 
shown in Fig 2. Rate limiting would fail or become abnormal 
without additional synchronization protections. As a result, 
locking operation to the queue is necessary in order to accurately 
limit the rate of each class. For example, before CPU core 0 
wants to perform a write operation to QoS class queue 0 in Fig. 
2, queue 0 must be in unlocked status, and must keep locked 
until CPU core 0 finished write operation. During the locking 
time, operations to this queue from other CPU cores have to wait 
until the lock becomes available. 

 

 
 

 

Figure. 1. Single-core rate limiting 
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Figure. 2. Multi-core rate limiting with lock 
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Obviously, lock contention and frequent interruption often 
lead to high CPU load, which degrades performance of packet 
processing on multi-core platform. In next subsection, a scalable 
lock-free rate limiting framework will be presented. 

B. CORAL Design 

The root cause for frequent lock contention and interruption 
is that multi cores share the queues of the same QoS class. Due 
to the fact that the NIC RSS driver distributes packets for multi-
core processing while the user-defined classifier classifies 
packets to different QoS classes, it cannot be expected that 
packets are sent to the appropriate QoS class queues directly 
from the NIC. 

In the design of CORAL, we introduce the concept of virtual 
QoS class queue. Virtual class queue itself is not a complete 
Qdisc, but acts as a portion of a complete Qdisc. Figure 3 depicts 
the relationship between virtual class queues and traditional 
class queues for classful rate limiting. Virtual QoS class queue 
00, 10, 20 and 30 are four sub class queues that together make 
up the class queue 0. On the other hand, virtual class queue 00, 
01 and 02 are the sub class queues which are mapped on core 0 
and can only be accessed by CPU core 0. 

Mathematically, the virtual QoS class queue is defined as 
follows: 

Definition 1: For a rate limiting implementation on 𝑚 cores 
platform with 𝑛 QoS classes, there are 𝑚 ∗ 𝑛 virtual QoS class 
queues, where 𝑣𝑐𝑞(𝑖, 𝑗) denotes a virtual class queue mapped on 
CPU core 𝑖 and used for QoS class 𝑗, 0 ≤ 𝑖 < 𝑚 and 0 ≤ 𝑗 < 𝑛. 

The introduction of virtual class queue eliminates the lock 
contention caused by multi-core’s access to shared resources. In 
order to ensure the classful rate limiting effects, another two 
parameters are attached to each virtual class queue: demand rate 
and supply rate. 

Demand rate is a parameter that calculates the demand rate 
of input packets in this virtual class queue. At a period 𝑇  of 
token update, 𝑤 packets arrive in virtual class queue 𝑣𝑐𝑞(𝑖, 𝑗), 
so the demand rate 𝑑𝑟(𝑖, 𝑗) for this virtual class queue is: 

 𝑑𝑟(𝑖, 𝑗) =  
𝑤

𝑇
 (1) 

Supply rate is one or a set of parameters which determines 
the actual packets transmission rate of this virtual class queue. 
Under given supply rate parameters, the virtual class queue is 
expected to dequeue at a specific average rate. 

The design of virtual class queues together with demand and 
supply rate parameters enables a lock-free rate limiting 
implementation for classful QoS on multi-core platforms. As 
shown in Fig. 3, each CPU core only needs write permission to 
the demand rate parameters and read permission to the supply 
rate parameters of its own virtual class queues. A scheduler 
(which may be assigned in an independent CPU core) takes 
charge of all demand rate collection and supply rate update. The 
scheduler only needs one permission to the parameter as well: 
read permission to all demand rate and write permission to all 
supply rate parameters. More specifically,  

RULE 1: For virtual class queue 𝑣𝑐𝑞(𝑖, 𝑗) , demand rate 
𝑑𝑟(𝑖, 𝑗)  can only be written by CPU core 𝑖  and read by the 
scheduler, and supply rate 𝑠𝑟(𝑖, 𝑗) can only be written by the 
scheduler and read by CPU core 𝑖. 

The scheduler periodically fetches the demand rate of each 
virtual class queue and recalculates the supply rate parameters 
correspondingly. Various scheduling algorithms can be applied 
for different purposes. For instance, for a rate limiting scheme 
on 𝑚 cores platform and  𝑛 QoS classes, there are 𝑚 ∗ 𝑛 virtual 
QoS class queues. If the demand rate of each virtual class queue 
is 𝑑𝑟(𝑖, 𝑗) , 0 ≤ 𝑖 < 𝑚 , 0 ≤ 𝑗 < 𝑛 , a practical algorithm to 
obtain supply rate parameter 𝑠𝑟(𝑖, 𝑗) is: 

 𝑠𝑟(𝑖, 𝑗) =  
𝑑𝑟(𝑖, 𝑗)

∑ 𝑑𝑟(𝑖, 𝑗)𝑛
𝑗=0

∗ 𝑐𝑟(𝑗) (2) 

Where 𝑐𝑟(𝑗) denotes the committed rate for QoS class 𝑗. 

Algorithm 1 shows the simplified pseudo-code of packets 
processing procedure for each virtual class queue. Every period 
T, 𝑑𝑟(𝑖, 𝑗) is calculated by equation (1). The updating of 𝑠𝑟(𝑖, 𝑗) 
is performed by the scheduler, as described in Algorithm 2. 

Algorithm 1 –  Packets Processing 

 Input:      𝑠𝑟(𝑖, 𝑗), packet pkt with length len, time t 

 Output: packet processing action 
  

1 𝑡𝑑𝑖𝑓𝑓 ← 𝑡 − 𝑡𝑙𝑎𝑠𝑡  

2 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 + 𝑡𝑑𝑖𝑓𝑓 ∗  𝑠𝑟(𝑖, 𝑗)  

3 if  𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 < 𝑙𝑒𝑛  then 

4 droppacket(pkt) 

5 else 
6 sendpacket(pkt) 

7 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 − 𝑙𝑒𝑛  

8 endif 

9 𝑡𝑙𝑎𝑠𝑡 ← 𝑡  

     
Figure. 3. CORAL design 
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Algorithm 2 –  Scheduling parameters updating 

 
Input:     number of CPU cores 𝑚, number of QoS classes 

𝑛,  𝑑𝑟(𝑖, 𝑗),  𝑐𝑟( 𝑗),  0 ≤ 𝑖 < 𝑚,  0 ≤ 𝑗 < 𝑛 

 Output: 𝑠𝑟(𝑖, 𝑗) 
  

1 foreach  𝑗 ∈ [0, … , 𝑛)  do 

2 𝑠𝑢𝑚 ← 0  

3 for 𝑖 = 1 → 𝑚  do 

4 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑑𝑟(𝑖, 𝑗)  

5 end 
6 foreach  𝑖 ∈ [0, … , 𝑚)  do 

7 𝑠𝑟(𝑖, 𝑗)  ← 𝑑𝑟(𝑖, 𝑗) ∗ 𝑐𝑟(𝑗) / 𝑠𝑢𝑚  

8 end 
9 end 

 

It must be noted that diverse fairness algorithms can be 
employed by the scheduler, including FIFO (First In, First Out), 
WFQ (Weighted Fair Queuing), max-min, etc. 

IV. EVALUATION 

In this section, we conducted a series of experiments to 
evaluate the performance and scalability of CORAL. 
Experiments are conducted on two HP Z228 SFF workstations 
with Intel(R) Core(TM) i7-4790 CPU platform (8 logic cores), 
Intel(R) 82599ES 10 Gigabit Ethernet Controller, and DPDK 
16.04 installed for low-level packet processing. Pktgen [16] is 
used to send traffic at wire rate and perform statistical analysis, 
and schedule algorithm described in Section III.B is employed 
to update the demand and supply rate of each virtual class queue. 

A.  Committed Rate 

Committed rate 𝑐𝑟 is the rate at which the tokens are added 
to the buckets. It is usually measured in bytes of IP packets per 
second. In our implementation, each QoS class could have its 
own committed rate. For QoS class 𝑗 , 𝑐𝑟(𝑗)  denotes its 
committed rate. To make the evaluation results more indicative, 
all QoS classed are assigned the same committed rate as shown 
in Fig.4. Packets of size 64 bytes are generated from pktgen with 
random source and destination IP, ensuring that all QoS classes 
in the rate limiter are evenly covered. The number of QoS 
classes ranges from 1 to 128, and four CPU cores are used for 
rate limiting in each experiment. 

In Fig. 4(a), both of the original locking method and our 
CORAL framework obtain a linear increasing output rate when 

the number of QoS classes is below 128. It is also proved that 
expected limiting rates are achieved by both methods by 
calculating using equation (3): 

 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑎𝑡𝑒 =  ∑ 𝑐𝑟( 𝑗)

𝑛

𝑗=0

= 𝑛 ∗ 𝑐𝑟 (3) 

Where there are 𝑚 cores platform with 𝑛 QoS classes, 0 ≤
𝑖 < 𝑚 and 0 ≤ 𝑗 < 𝑛.  

When there are 128 QoS classes, the expected output rate is 
128 ∗ 64Mbits/s =  8.192Gbits/s. Though both methods fail 
to achieve that value, carol still gets nearly 50% more throughput 
(6.27Gbits/s compared to 4.181Gbits/s). Figure 4(b) and 4(c) 
shows similar experimental results. 

B. Maximum Supported Limiting Rate 

In this subsection, several experiments are conducted to 
evaluate the maximum supported limiting rate of the locking 
method and our lock-free framework. Figure 5 depicts the results 
of the rate limiter with four CPU cores and 16 QoS classes in 
total. As the number of QoS classes grows, the output rate of the 
locking method decreases due to frequent lock contention. Since 
the source and destination IP of input packets are randomized, 
the more QoS classes the rate limiter needs to deal with, the more 
likely different cores access one QoS class queue at the same 
time. 

In contrast, the performance of CORAL remains stable due 
to the introduction of virtual class queue isolating the 
simultaneously access to the same queue by different CPU cores. 
Experimental results indicate that under the circumstance of four 
CPU cores with 16 QoS classes, CORAL achieves the maximum 
limiting rate of 6.373Gbits/s, 48% more than the locking rate 
limiting method at the same condition ( 4.297Gbits/s). 

C. Packet Size 

TABLE I.  EXPERIMENT RESULTS OF DIFFERENT PACKET SIZE 

Packet Size 64 Byte 320 Byte 576 Byte 832 Byte 

Rate 512 Mbits/s 512 Mbits/s 512 Mbits/s 512 Mbits/s 

Packet Size 1088 Byte 1344 Byte 1500 Byte Mixed 

Rate 512 Mbits/s 512 Mbits/s 511 Mbits/s 512 Mbits/s 

 

   
(a)                                                                        (b)                                                                        (c) 

 

Figure. 4. Evaluation results for different committed rate (a) 𝒄𝒓 =  𝟔𝟒𝐌𝐁𝐢𝐭𝐬/𝐬 (b) 𝒄𝒓 =  𝟏𝟐𝟖𝐌𝐁𝐢𝐭𝐬/𝐬 (c) 𝒄𝒓 =  𝟏𝟗𝟐𝐌𝐁𝐢𝐭𝐬/𝐬 
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This subsection shows the experimental results of different 
input packet size. Four CPU cores are used to limit the rate, and 
8 QoS classes are set with  64Mbits/s committed rate for each. 
Pktgen is configured to generate packets varying from small 
packet size such as 64bytes, 320bytes to large packets of 
1500bytes. Moreover, a mixed packet set filled with these small 
and large packets is generated as well. As Table I. illustrates, the 
output rate of CORAL, which is exactly the sum of each class’s 
expected commit rate, stays almost constant regardless of the 
packet size. 

D. Number of CPU Cores 

In order to evaluate the scalability of CORAL, several 
experiments are conducted using different number of CPU 
cores, ranging from 1 to 6. We assign 16 QoS classes to each 
CPU core and  64Mbits/s committed rate for each QoS class. 
Random packets with size of 64 bytes are sent from the pktgen 
to the limiter. Figure 6 states that as the number of cores 
increases, the output rate of CORAL keeps improving. On the 
contrary, the comparative method achieves the highest output 
rate when 4 CPU cores are used. In the case of 6 cores, CORAL 
achieves  5.634Gbits/s output rate while the locking method 
only reaches at  3.463Gbits/s  output rate: CORAL obtains 
more than 60% performance improvement. These evaluations 
prove that CORAL scales well with more CPU cores in use. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we present CORAL, a framework that 
effectively implements high performance rate limiting on multi-
core platform. Virtual class queues are introduced to isolate 
simultaneous access to the same queue by different CPU cores, 
and two additional parameters demand rate and supply rate are 
attached to each virtual class queue to synchronize the QoS 
constraints among multi cores. In comparison with the existing 
multi-core rate limiting approach, CORAL nearly achieves 50% 
to 60% higher maximum supported limiting rate. The 
experimental results also show that CORAL has great scalability 
over different number of CPU cores as well as stable 
performance among packets of various sizes. Our future work 
will focus on further optimizing the performance of CORAL to 
support bandwidth of 40Gbits/s and beyond. 
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Figure. 6. Experimental results of different number of 

CPU cores used for rate limiting 
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Figure. 5. Maximum supported limiting rate for 

different QoS classes number 

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128 256 512

M
ax

 r
at

e 
(G

b
it
s/

s)

Number of QoS classes

locking method CORAL


