
CORAL: A Multi-Core Lock-Free Rate

Limiting Framework

Zhe Fu1, 2, Zhi Liu1, 2, Jiaqi Gao1, 2, Wenzhe Zhou4, Wei Xu4, and Jun Li2, 3
1 Department of Automation, Tsinghua University, China

2 Research Institute of Information Technology, Tsinghua University, China
3 Tsinghua National Lab for Information Science and Technology, China

4 Huawei Technologies

{fu-z13, zhi-liu12, gaojq12}@mails.tsinghua.edu.cn, {wenzhe.zhou, wei.xu1}@huawei.com, junl@tsinghua.edu.cn

Abstract—Rate limiting is a fundamental function for

managing quality of network service. Unfortunately, the poor

scalability of today’s rate limiting approaches restricts the

performance on multi-core platform. In this work, we present

CORAL, a lock-free framework that effectively implements high

performance rate limiting on multi-core platform. The key idea is

that CORAL uses virtual class queues to isolate simultaneous

access to the same queue by different CPU cores and two

additional parameters to synchronize the QoS constraints among

multi cores. Experimental results show that this lock-free design

obtains around 50% higher limiting rate compared to existing

locking method, and shows great scalability and stable

performance over different number of cores and packet sizes.

Keywords—quality of service; rate limiting; multi-core; lock-free

I. INTRODUCTION

QoS (Quality of Service) functions, which includes
guarantees of latency and minimum bandwidth, rate limiting,
bandwidth shaping and sharing for different flows, are playing
an important role in quantitatively measuring the quality of
service and providing differentiated services for network flows.
As a fundamental part of QoS, rate limiting is used to control the
rate of traffic at the input and output side. A router could smooth
out the traffic by limiting the rates of different flows, and a
firewall could perform access control by limiting the rate of
specific incoming flows.

Nowadays, rate limiting is performed by either hardware or
software. Modern NICs support multiple hardware transmit
queues. When transmitting a packet, a request will be sent to the
NIC by the OS to notify the arrival of the packet, and an arbiter
is used by the NIC to compute the fetching order of packets from
different ring buffers. The NIC first looks up the physical
address of the packet, and then initiates a DMA (Direct Memory
Access) transfer of the packet contents to its internal packet
buffer. Finally, a scheduler decides whether or when the packet
will be transmitted.

Hardware based rate limiting ensures low CPU overhead and
high accuracy. At the same time, storing masses of per-class
packet queues and ring buffers for each queue on the NIC may
result in poor scalability. For example, if 4,000 queues are used
in the NIC and each queue stores 15KB packet data (about 1,000

packets), it would consume about 60 MB of SRAM of the NIC,
which is too expensive for commodity NIC [1]. Besides, the
widespread use of containers produces larger scale of network
flows. Current NIC hardware only supports 8-128 rate limiters
[2], which carries significant limitations for fine-grained rate
limiting and other QoS applications in these scenarios.

Most operating systems have already supported software
based rate limit function. As the foundation of modern network,
Linux offers a very rich set of tools for managing and
manipulating the transmission of packets. For example, TC
(Traffic Control) is a user-space utility program used to
configure Linux kernel packet scheduler. It uses QDisc
(Queuing Discipline), which can be configured with traffic
classes, to enforce flexible and scalable traffic control policies.
But software based rate limiting implementation usually
encounters the problem of high CPU overhead due to lock
contention and frequent interruption. Previous experiments [3]
show that software based rate limiting implementation
consumes about 5 times more kernel CPU utilization of that by
hardware based methods.

With the rapid development of SDN (Software Defined
Network) and NFV (Network Function Virtualization), more
and more network functions are virtualized and implemented on
general-purpose processor platform. While allowing flexible
deployment and live migration, the poor performance of these
implementations has become a bottleneck for supporting high
bandwidth network traffic processing. Recently, the
development of data plane technology such as DPDK (Data
Plane Development Kit) [4] and fd.io [5] bring new possibilities
into the implementation of high performance QoS functions.
However, it is still a challenge to effectively map queues on
multi cores while reducing overhead as much as possible.

In this paper, we present CORAL, a scalable multi-Core
lOck-free RAte Limiting framework. Specifically, we introduce
virtual QoS class queue to isolate simultaneous access to the
same queue by different CPU cores, and use two additional
parameters demand rate and supply rate attached to each virtual
class queue to synchronize the QoS constraints among multi
cores. Experimental results show that compared to existing

multi-core rate limiting implementations, around 50% higher
limiting rate can be achieved with CORAL. In addition, CORAL
shows great scalability as the number of CPU cores increases.

This paper is organized as follows. Section II gives the
overview of related work. In Section III, we analyze the
shortcomings of state-of-art multi-core rate limiting
implementations, and propose the design of CORAL. Section IV
discusses the experimental results of CORAL, and compares the
results with the existing method. Finally, Section VI concludes
the paper.

II. RELATED WORK

In [6, 7], generic token bucket management methods for QoS
requirements are introduced. The tokens normally represent a
single packet or a unit of predetermined bytes, and are added into
a bucket at a fixed rate. The bucket is checked to see whether it
contains sufficient tokens when a packet arrives. If the bucket
contains enough tokens that packet needs, the packet is passed
and several tokens (usually equivalent to the length of the
packet) are removed. Otherwise, no tokens are removed from the
bucket, but the packet is dropped or marked as non-conformant
for further processing. Leaky bucket is another algorithm used
to limit the rate of network traffic. Unlike token bucket
algorithms, leaky rate algorithm deliver packets at a constant
rate, and it lack the power of handling bursty traffic. Hierarchical
token bucket (HTB) [8] algorithm allows for complex and
granular control over traffic. It classifies traffic in a multilevel
hierarchy, based upon a variety of parameters such as IP
addresses, priority or interface. Nevertheless, these generic
algorithms are not optimized for multi-core scenarios, thus don’t
scale well when the number of CPU cores is increasing.

Recently, quite a number of researches propose more
advanced rate limiting solutions for specific situations.
Gatekeeper [9], and EyeQ [10] both limit the rate between each
VM (Virtual Machine) pair to guarantee bandwidth for multi-
tenant datacenter network. QCN [11] and DCTCP [12] use rate
limiters to reduce congestions in data centers where bursty
correlated traffic coupled with small buffers often result in poor
application performance [13]. All these methods take advantage
of rate limiting, but none of them focus on solving the
performance bottleneck of rate limiter itself. In addition, with
growing number of VMs and flows in data centers and
virtualized network environment, the number of limiters is
expected to increase, bringing more challenges to high
performance rate limiting.

In [14] a hardware priority queue architecture for link
scheduling in high-speed switches is presented, guaranteeing
QoS requirements in high speed networks. ServerSwitch [15]
proposes a programmable NIC for configurable congestion
control management. SENIC [1] offloads rate limiting to
NetFPGA and leave the rest task to software, aiming at reducing
CPU load while supporting thousands of rate limiters. However,
all of these work rely heavily on specific hardware, and will lose
scalability on general-purpose processor platform.

III. DESIGN

Receive-Side Scaling (RSS) is a network feature of NIC
which enables efficient distribution of input packets. With the
support of RSS, network receive processes are distributed across
several hardware-based receive queues, which allows multiple
processing cores process network traffic simultaneously and
relieve bottlenecks in receive interrupt processing caused by
overloading a single core. RSS is the fundamental technology of
high performance packets processing on multi-core platform. In
this section, we will first analyze the disadvantages of current
multi-core rate limiting methods, and then present a new
scalable lock-free rate limiting framework to overcome these
shortcomings.

A. State-of-art Methods

Figure 1 shows the situation where a single core takes
responsibility of packets receiving and rate limiting. After
received from the NIC, the packets are classified by the CPU
core and sent to several queues of various QoS classes for fine-
grained traffic control. When it extends to multi-core scenario,
every CPU core receives packets from the NIC and uses its own
classifier to send packets to different QoS classes. However,
since traffic distribution by RSS is determined by the NIC driver,
rather than the classifier of each CPU core, packets to different
CPU cores may be classified as the same QoS class and sent to
the same queue again. This will lead to simultaneous reading and
writing operation to one queue from different CPU cores as
shown in Fig 2. Rate limiting would fail or become abnormal
without additional synchronization protections. As a result,
locking operation to the queue is necessary in order to accurately
limit the rate of each class. For example, before CPU core 0
wants to perform a write operation to QoS class queue 0 in Fig.
2, queue 0 must be in unlocked status, and must keep locked
until CPU core 0 finished write operation. During the locking
time, operations to this queue from other CPU cores have to wait
until the lock becomes available.

Figure. 1. Single-core rate limiting

CPU Core 0

PKT
RX

QoS Class 0

CLA-
SSIFY

QoS Class 1

QoS Class 2

NIC
RX

PKT
TX

NIC
TX

…
 …

Figure. 2. Multi-core rate limiting with lock

CPU Core 0
PKT
RX

CLA-
SSIFY

NIC
RX

CPU Core 1
PKT
RX

CLA-
SSIFY

CPU Core 2
PKT
RX

CLA-
SSIFY

CPU Core 3
PKT
RX

CLA-
SSIFY

QoS Class 0

QoS Class 1

QoS Class 2

R/W

R/W

R/W

R/W

R/W

R/W

PKT
TX

NIC
TX

…
 …

Obviously, lock contention and frequent interruption often
lead to high CPU load, which degrades performance of packet
processing on multi-core platform. In next subsection, a scalable
lock-free rate limiting framework will be presented.

B. CORAL Design

The root cause for frequent lock contention and interruption
is that multi cores share the queues of the same QoS class. Due
to the fact that the NIC RSS driver distributes packets for multi-
core processing while the user-defined classifier classifies
packets to different QoS classes, it cannot be expected that
packets are sent to the appropriate QoS class queues directly
from the NIC.

In the design of CORAL, we introduce the concept of virtual
QoS class queue. Virtual class queue itself is not a complete
Qdisc, but acts as a portion of a complete Qdisc. Figure 3 depicts
the relationship between virtual class queues and traditional
class queues for classful rate limiting. Virtual QoS class queue
00, 10, 20 and 30 are four sub class queues that together make
up the class queue 0. On the other hand, virtual class queue 00,
01 and 02 are the sub class queues which are mapped on core 0
and can only be accessed by CPU core 0.

Mathematically, the virtual QoS class queue is defined as
follows:

Definition 1: For a rate limiting implementation on 𝑚 cores
platform with 𝑛 QoS classes, there are 𝑚 ∗ 𝑛 virtual QoS class
queues, where 𝑣𝑐𝑞(𝑖, 𝑗) denotes a virtual class queue mapped on
CPU core 𝑖 and used for QoS class 𝑗, 0 ≤ 𝑖 < 𝑚 and 0 ≤ 𝑗 < 𝑛.

The introduction of virtual class queue eliminates the lock
contention caused by multi-core’s access to shared resources. In
order to ensure the classful rate limiting effects, another two
parameters are attached to each virtual class queue: demand rate
and supply rate.

Demand rate is a parameter that calculates the demand rate
of input packets in this virtual class queue. At a period 𝑇 of
token update, 𝑤 packets arrive in virtual class queue 𝑣𝑐𝑞(𝑖, 𝑗),
so the demand rate 𝑑𝑟(𝑖, 𝑗) for this virtual class queue is:

 𝑑𝑟(𝑖, 𝑗) =
𝑤

𝑇
 (1)

Supply rate is one or a set of parameters which determines
the actual packets transmission rate of this virtual class queue.
Under given supply rate parameters, the virtual class queue is
expected to dequeue at a specific average rate.

The design of virtual class queues together with demand and
supply rate parameters enables a lock-free rate limiting
implementation for classful QoS on multi-core platforms. As
shown in Fig. 3, each CPU core only needs write permission to
the demand rate parameters and read permission to the supply
rate parameters of its own virtual class queues. A scheduler
(which may be assigned in an independent CPU core) takes
charge of all demand rate collection and supply rate update. The
scheduler only needs one permission to the parameter as well:
read permission to all demand rate and write permission to all
supply rate parameters. More specifically,

RULE 1: For virtual class queue 𝑣𝑐𝑞(𝑖, 𝑗) , demand rate
𝑑𝑟(𝑖, 𝑗) can only be written by CPU core 𝑖 and read by the
scheduler, and supply rate 𝑠𝑟(𝑖, 𝑗) can only be written by the
scheduler and read by CPU core 𝑖.

The scheduler periodically fetches the demand rate of each
virtual class queue and recalculates the supply rate parameters
correspondingly. Various scheduling algorithms can be applied
for different purposes. For instance, for a rate limiting scheme
on 𝑚 cores platform and 𝑛 QoS classes, there are 𝑚 ∗ 𝑛 virtual
QoS class queues. If the demand rate of each virtual class queue
is 𝑑𝑟(𝑖, 𝑗) , 0 ≤ 𝑖 < 𝑚 , 0 ≤ 𝑗 < 𝑛 , a practical algorithm to
obtain supply rate parameter 𝑠𝑟(𝑖, 𝑗) is:

 𝑠𝑟(𝑖, 𝑗) =
𝑑𝑟(𝑖, 𝑗)

∑ 𝑑𝑟(𝑖, 𝑗)𝑛
𝑗=0

∗ 𝑐𝑟(𝑗) (2)

Where 𝑐𝑟(𝑗) denotes the committed rate for QoS class 𝑗.

Algorithm 1 shows the simplified pseudo-code of packets
processing procedure for each virtual class queue. Every period
T, 𝑑𝑟(𝑖, 𝑗) is calculated by equation (1). The updating of 𝑠𝑟(𝑖, 𝑗)
is performed by the scheduler, as described in Algorithm 2.

Algorithm 1 – Packets Processing

 Input: 𝑠𝑟(𝑖, 𝑗), packet pkt with length len, time t

 Output: packet processing action

1 𝑡𝑑𝑖𝑓𝑓 ← 𝑡 − 𝑡𝑙𝑎𝑠𝑡

2 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 + 𝑡𝑑𝑖𝑓𝑓 ∗ 𝑠𝑟(𝑖, 𝑗)

3 if 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 < 𝑙𝑒𝑛 then

4 droppacket(pkt)

5 else
6 sendpacket(pkt)

7 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑛𝑢𝑚𝑡𝑜𝑘𝑒𝑛𝑠 − 𝑙𝑒𝑛

8 endif

9 𝑡𝑙𝑎𝑠𝑡 ← 𝑡

Figure. 3. CORAL design

supplydemand

supplydemand

supplydemand

supplydemand

CPU Core 0
PKT
RX

CLA-
SSIFY

NIC
RX

CPU Core 1
PKT
RX

CLA-
SSIFY

CPU Core 2
PKT
RX

CLA-
SSIFY

CPU Core 3
PKT
RX

CLA-
SSIFY

Virtual QoS Class 00
Virtual QoS Class 01

R/W

R/W

R/W

R/W

R/W

R/W

PKT
TX

NIC
TX

Virtual QoS Class 02…

Virtual QoS Class 10
Virtual QoS Class 11
Virtual QoS Class 12

Virtual QoS Class 20
Virtual QoS Class 21
Virtual QoS Class 22…

Virtual QoS Class 30
Virtual QoS Class 31
Virtual QoS Class 32

…

Schedule Core

…

…

demand

demand

demand

demand

supply

supply

supply

supply

Write Only

Read Only

Read Only Write Only

SCHEDULER

Algorithm 2 – Scheduling parameters updating

Input: number of CPU cores 𝑚, number of QoS classes

𝑛, 𝑑𝑟(𝑖, 𝑗), 𝑐𝑟(𝑗), 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑛

 Output: 𝑠𝑟(𝑖, 𝑗)

1 foreach 𝑗 ∈ [0, … , 𝑛) do

2 𝑠𝑢𝑚 ← 0

3 for 𝑖 = 1 → 𝑚 do

4 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑑𝑟(𝑖, 𝑗)

5 end
6 foreach 𝑖 ∈ [0, … , 𝑚) do

7 𝑠𝑟(𝑖, 𝑗) ← 𝑑𝑟(𝑖, 𝑗) ∗ 𝑐𝑟(𝑗) / 𝑠𝑢𝑚

8 end
9 end

It must be noted that diverse fairness algorithms can be
employed by the scheduler, including FIFO (First In, First Out),
WFQ (Weighted Fair Queuing), max-min, etc.

IV. EVALUATION

In this section, we conducted a series of experiments to
evaluate the performance and scalability of CORAL.
Experiments are conducted on two HP Z228 SFF workstations
with Intel(R) Core(TM) i7-4790 CPU platform (8 logic cores),
Intel(R) 82599ES 10 Gigabit Ethernet Controller, and DPDK
16.04 installed for low-level packet processing. Pktgen [16] is
used to send traffic at wire rate and perform statistical analysis,
and schedule algorithm described in Section III.B is employed
to update the demand and supply rate of each virtual class queue.

A. Committed Rate

Committed rate 𝑐𝑟 is the rate at which the tokens are added
to the buckets. It is usually measured in bytes of IP packets per
second. In our implementation, each QoS class could have its
own committed rate. For QoS class 𝑗 , 𝑐𝑟(𝑗) denotes its
committed rate. To make the evaluation results more indicative,
all QoS classed are assigned the same committed rate as shown
in Fig.4. Packets of size 64 bytes are generated from pktgen with
random source and destination IP, ensuring that all QoS classes
in the rate limiter are evenly covered. The number of QoS
classes ranges from 1 to 128, and four CPU cores are used for
rate limiting in each experiment.

In Fig. 4(a), both of the original locking method and our
CORAL framework obtain a linear increasing output rate when

the number of QoS classes is below 128. It is also proved that
expected limiting rates are achieved by both methods by
calculating using equation (3):

 𝑜𝑢𝑡𝑝𝑢𝑡 𝑟𝑎𝑡𝑒 = ∑ 𝑐𝑟(𝑗)

𝑛

𝑗=0

= 𝑛 ∗ 𝑐𝑟 (3)

Where there are 𝑚 cores platform with 𝑛 QoS classes, 0 ≤
𝑖 < 𝑚 and 0 ≤ 𝑗 < 𝑛.

When there are 128 QoS classes, the expected output rate is
128 ∗ 64Mbits/s = 8.192Gbits/s. Though both methods fail
to achieve that value, carol still gets nearly 50% more throughput
(6.27Gbits/s compared to 4.181Gbits/s). Figure 4(b) and 4(c)
shows similar experimental results.

B. Maximum Supported Limiting Rate

In this subsection, several experiments are conducted to
evaluate the maximum supported limiting rate of the locking
method and our lock-free framework. Figure 5 depicts the results
of the rate limiter with four CPU cores and 16 QoS classes in
total. As the number of QoS classes grows, the output rate of the
locking method decreases due to frequent lock contention. Since
the source and destination IP of input packets are randomized,
the more QoS classes the rate limiter needs to deal with, the more
likely different cores access one QoS class queue at the same
time.

In contrast, the performance of CORAL remains stable due
to the introduction of virtual class queue isolating the
simultaneously access to the same queue by different CPU cores.
Experimental results indicate that under the circumstance of four
CPU cores with 16 QoS classes, CORAL achieves the maximum
limiting rate of 6.373Gbits/s, 48% more than the locking rate
limiting method at the same condition (4.297Gbits/s).

C. Packet Size

TABLE I. EXPERIMENT RESULTS OF DIFFERENT PACKET SIZE

Packet Size 64 Byte 320 Byte 576 Byte 832 Byte

Rate 512 Mbits/s 512 Mbits/s 512 Mbits/s 512 Mbits/s

Packet Size 1088 Byte 1344 Byte 1500 Byte Mixed

Rate 512 Mbits/s 512 Mbits/s 511 Mbits/s 512 Mbits/s

(a) (b) (c)

Figure. 4. Evaluation results for different committed rate (a) 𝒄𝒓 = 𝟔𝟒𝐌𝐁𝐢𝐭𝐬/𝐬 (b) 𝒄𝒓 = 𝟏𝟐𝟖𝐌𝐁𝐢𝐭𝐬/𝐬 (c) 𝒄𝒓 = 𝟏𝟗𝟐𝐌𝐁𝐢𝐭𝐬/𝐬

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

R
at

e
(G

b
it
s/

s)

Number of QoS classes

locking method

CORAL

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

R
at

e
(G

b
it
s/

s)

Number of QoS classes

locking method

CORAL

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

R
at

e
(G

b
it
s/

s)

Number of QoS classes

locking method

CORAL

This subsection shows the experimental results of different
input packet size. Four CPU cores are used to limit the rate, and
8 QoS classes are set with 64Mbits/s committed rate for each.
Pktgen is configured to generate packets varying from small
packet size such as 64bytes, 320bytes to large packets of
1500bytes. Moreover, a mixed packet set filled with these small
and large packets is generated as well. As Table I. illustrates, the
output rate of CORAL, which is exactly the sum of each class’s
expected commit rate, stays almost constant regardless of the
packet size.

D. Number of CPU Cores

In order to evaluate the scalability of CORAL, several
experiments are conducted using different number of CPU
cores, ranging from 1 to 6. We assign 16 QoS classes to each
CPU core and 64Mbits/s committed rate for each QoS class.
Random packets with size of 64 bytes are sent from the pktgen
to the limiter. Figure 6 states that as the number of cores
increases, the output rate of CORAL keeps improving. On the
contrary, the comparative method achieves the highest output
rate when 4 CPU cores are used. In the case of 6 cores, CORAL
achieves 5.634Gbits/s output rate while the locking method
only reaches at 3.463Gbits/s output rate: CORAL obtains
more than 60% performance improvement. These evaluations
prove that CORAL scales well with more CPU cores in use.

V. CONCLUSION AND FUTURE WORK

In this paper, we present CORAL, a framework that
effectively implements high performance rate limiting on multi-
core platform. Virtual class queues are introduced to isolate
simultaneous access to the same queue by different CPU cores,
and two additional parameters demand rate and supply rate are
attached to each virtual class queue to synchronize the QoS
constraints among multi cores. In comparison with the existing
multi-core rate limiting approach, CORAL nearly achieves 50%
to 60% higher maximum supported limiting rate. The
experimental results also show that CORAL has great scalability
over different number of CPU cores as well as stable
performance among packets of various sizes. Our future work
will focus on further optimizing the performance of CORAL to
support bandwidth of 40Gbits/s and beyond.

REFERENCES

[1] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A.

Vahdat. "SENIC: scalable NIC for end-host rate limiting." In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pp. 475-488. 2014.

[2] Intel 82599 10GbE Controller. http://www.intel.com/content/dam/doc
/datasheet/82599-10-gbecontroller-datasheet.pdf.

[3] S. Radhakrishnan, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat.
"NicPic: Scalable and Accurate End-Host Rate Limiting." In 5th USENIX
Workshop on Hot Topics in Cloud Computing. 2013.

[4] Data Plane Development Kit, http://dpdk.org.

[5] The Fast Data Project (FD.io), https://fd.io.

[6] M. A. Franklin., P. Crowley, H. Hadimioglu, and P. Z. Onufryk, Network
Processor Design: issues and practices. Vol. 2. Morgan Kaufmann, 2003.

[7] G. Varghese. Network algorithmics. Chapman & Hall/CRC, 2010.

[8] Hierarchical token bucket, http://luxik.cdi.cz/~devik/qos/htb.

[9] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes.
"Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant
Datacenter Networks." In WIOV. 2011.

[10] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim. "EyeQ: practical network performance isolation at the edge."
In 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pp. 297-311. 2013.

[11] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B.
Prabhakar, and M. Seaman. "Data center transport mechanisms:
Congestion control theory and IEEE standardization." In 46th Annual
Allerton Conference on Communication, Control, and Computing, pp.
1270-1277. IEEE, 2008.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. "Data center tcp (dctcp)." In
ACM SIGCOMM computer communication review, vol. 40, no. 4, pp.
63-74. ACM, 2010.

[13] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, and J. Li. "Towards efficient
load distribution in big data cloud." In 2015 International Conference on
Computing, Networking and Communications (ICNC), pp. 117-122.
IEEE, 2015.

[14] S. Moon, J. Rexford, and K. G. Shin. "Scalable hardware priority queue
architectures for high-speed packet switches." IEEE Transactions on
Computers 49, no. 11 (2000): 1215-1227.

[15] G. Lu, C. Guo, Y. Li, X. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, and
Y. Zhang. "ServerSwitch: A Programmable and High Performance
Platform for Data Center Networks." In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11), pp. 15-28.
2011.

[16] Pktgen, https://github.com/pktgen/Pktgen-DPDK.

Figure. 6. Experimental results of different number of

CPU cores used for rate limiting

0

1

2

3

4

5

6

1 2 3 4 5 6

R
at

e
(G

b
it
s/

s)

Number of cores

locking method

CORAL

Figure. 5. Maximum supported limiting rate for

different QoS classes number

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16 32 64 128 256 512

M
ax

 r
at

e
(G

b
it
s/

s)

Number of QoS classes

locking method CORAL

