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Abstract—Quality of Service (QoS) is essential to datacenters,
which requires effective schemes to manage the flows among
numerous servers. However, existing management techniques
mainly focus on the QoS issues over Internet. This paper
presents a Dynamic Feedback Control flow management model
for datacenters, called DFC, to achieve performance improvement
and fault-tolerance. Based on the new model, mechanisms derived
from feedback control are designed and evaluated. By observing
system status of each server in the datacenter, DFC successfully
applies a smart resources distribution policy and resiles when
node breaks down. Preliminary experiments are carried out to
validate the effectiveness of the model, based on both the NS2
simulation platform and a datacenter prototype. Evaluation re-
sults demonstrate that DFC can effectively improve datacenter’s
performance and guarantee a good reliability.

I. Introduction

In the last decade, there is an increasing trend to migrate
more and more computing and storage services into very
large size datacenters, such as those of IBM [1] and Amazon
[2] which consist of huge number of servers. For instance,
the datacenter in Google Inc. combines more than 15,000
commodity-class PCs [3] together to provide worldwide search
services. One web search request using Google may access
thousands of Google Web Servers (GWSs) to inquire petabytes
of data storage, and spread heavy flows inside the datacenters.
Those heavy flows often lead to unavoidable breakdown of
the commodity servers, and some specialized links within
datacenters also observe higher loss ratio than others [4]. This
implies that the datacenter’s performance can benefit from
a management of flows, and thus put forward a significant
requirement for an effective flow management technology to
improve the performance and reliability of datacenters.

Technologies of flow management over IP based Internet
have been studied for years [5]–[7]. Most of those works are
designed to guarantee the Quality of Service (QoS) of links,
such as latency for a specialized video meeting application, or
bandwidth for web browsers. Nevertheless, even with decades
long effort, an effective and precise flow management over
dynamic network system is still lacking, and thus researchers
still must confront with that.

Main challenges on flow management over Internet consist
of two aspects: reasonable model and available experimental
platform. First, current Internet is based on “distributed man-

agement” [8], hence a central administration is impractical to
be deployed with the present Internet. At the same time, real
network systems are dynamic with various types of traffic and
different types of user behaviors. Thus it is difficult to pro-
pose an accurate model. Secondly, Internet scale experimental
platform is hard to be designed and implemented. Though
test bed such as PlanetLab [9] provide a global platform
for deploying and evaluating network services [10], [11],
there are still several deficiencies. For example, complicated
user behaviors cannot be simulated without real people, and
experiment results are not always reproducible. Moreover,
the scale may not be large enough for some applications. In
addition, many PlanetLab machines may become unavailable
at any time [12]. All these challenges imply that the flow study
of management over the global Internet still has a long way
to evolve.

However, within datacenters, the requirements of flow man-
agement come across some new issues. Performance require-
ments are much higher for the interconnection within data-
centers. For example, aggregate traffic volume in datacenters
of the High Energy and Nuclear Physics (HENP) community
is expected to increase from 10 Gbps to the Tbps range
[13]. However, since the computing and storage devices of
a datacenter are physically co-located and their interconnect
networks are usually centrally managed; its system model is
much more controllable than the Internet. Aimed at bringing in
a management layer upon current networking devices, several
works have been proposed [14], [15]. Although these research
contributed to drive the flow management more flexible and
easier to deploy, smart dynamic mechanisms of flow manage-
ment are still in desperate need of an appropriate theory and
model.

In this paper, we exploit the possibility to address a
twofold problem: performance improvement with reliability
provisioning within datacenters. Based on a control theory
analysis, we propose a Dynamic Feedback Control (DFC)
model for the flow management problem within datacenters.
The model is evaluated on the NS-2 [16] simulation platform.
The experimental results illustrated a promising demonstration
in the direction of designing new dynamic mechanism towards
smart datacenters.

The remainder of this paper is organized as follows. Section



II summarizes the related works. Section III details the feed-
back control theory and Section IV describes the DFC model
design. Section V analyzes the experimental results. In the last
section, we draw a conclusion of our work.

II. RelatedWork

In this section, we summarized previous works on studying
flow control problem with the feedback control scheme. The
Feedback Control Theory is already utilized in the perfor-
mance assurance mechanisms such as guarantees on band-
width, latency or availability, all of which are considers as
the requirement of QoS.

[17] presented a control-theoretic approach to reactive flow
control. With deterministic and stochastic models, Packet-Pair
rate probing technique and provably stable rate-based flow
control schemes were proposed.

The Feedback Control Theory has been used in the TCP
congestion problems to guarantee a fair share of resources
among multiple TCP flows [18], [19]. These works attempt
to apply control theory into the end-to-end framework to a
certain extend.

T. F. Abdelzaher et al. [20] designed a control theory
based approach to guarantee the bandwidth and latencyp of
web server. At about the same time, IBM Laboratories also
implemented a feedback controller in the queue manages of
its Lotus Email Server [21].

The feedback control mechanism is also employed in the
management of distributed real-time systems [22]–[24] to
manage system resources, such as to control CPU utilization
or to tune memory usage. These successful results of apply-
ing control theory to the control of the practical distributed
systems imply that Feedback Control Theory can play a fun-
damental role in the control of dynamic systems, which also
suggests that Feedback Control Theory is one of the essential
theories for designing smart flow management mechanisms
within datacenters.

Application Services Providers (ASP) also successfully used
Feedback Control Theory to design their control layer to
guarantee QoS. Examples are SwiFT [25] and ControlWare
[26]. These interesting work applied Feedback Control Theory
to the middleware architecture [27], which proves a model for
distributed system services.

All these works successfully adopted feedback control into
QoS assurance mechanisms, which suggests a promising way
to support QoS within datacenters.

Recent years, there are a number of works to design scalable
network architectures of datacenters. [28], [29] suggest data-
centers based on the classic fat tree topology. Though DCell
[30] and BCube [31] have proposed two specialized kinds of
topologies for datacenter, these architectures are also implicit
hierarchical in topology. As such, we take the classic fat tree
topology in this paper. We believe other hierarchical topologies
will be compatible with our work. A simple example of
datacenter of fat tree topology is shown in Fig.1. As we can
see, one fat tree topology datacenter includes three layers:
Core-Layer, Aggregation-Layer and Edge-Layer. Specifically,

Fig. 1. A simple example for the fat tree topology

Fig. 2. Model of the Feedback Control System

at the Edge-Layer there are many groups of servers, such a
group of servers is named as a block.

III. Feedback ControlMechanism
Feedback Control Theory [32] is quite adaptive to the

behaviors of dynamic systems like datacenters. The term
feedback means the controller affects the inputs variables
by referring the output of the system, making a close-loop
mechanism. Fig.2 shows a general model of Feedback Control
System, which contains a feedback control loop and a dynamic
system, or the controlled object. The feedback control loop,
which is the main part of the Feedback Control System,
consists of three components: Sensor, Controller and Actuator.

a. Sensor
Main task of the Sensor is to sample the output of the
controlled system, and transfer the sampling results to
the Controller. In datacenters, we use a sensor counter to
watch the flow queue status of each server, where a busy
state can be indicated.

b. Controller
Controller compares the output of Sensor and a reference
input, to get the control error. With a predefined control
algorithm, an adjustment value is calculated and sent to
the Actuator.

c. Actuator
Actuator produces a signal to adjust the input of the con-
trolled system based on the adaption results of Controller.



Fig. 3. Flow Management Model with Feedback Control

To manage the network flows within datacenters, a policy-
aware switch should be used, such as [14].

With these three main components, Feedback Control
Mechanism can be described generally as: Controller uses
Sensor to watch the controlled system’s output, and adjusts
the input of the controlled system with the Actuator.

The transfer functions are described in Laplace transform
[32]. If G1(s) represents the transfer function of the uncor-
rected open-loop system, G2(s) represents the transfer function
of feedback loop. Then the global transfer function of close-
loop system can be described in formula (1).

G(s) =
y(s)
v(s)

=
G1(s)

1 + G1(s)G2(s)
(1)

In (1), v(s) and y(s) represent the input and output of the
control system separately.

From (1), the feedback loop is quite pivotal to the per-
formance of the global control system, so the Controller’s
adaption algorithm must be design appropriately.

IV. Dynamic Feedback Control

In this section we formulize the DFC model with Feedback
Control theory, and to solve the problem of multiple-server
controlling, we design an adaption algorithm.

A. Model Formulation

Instead of traditional high-performance computing center
with expensive and special servers, today’s Internet datacen-
ters utilize commoditized computers and general switches to
gain better price-performance trade-off [3]. Thus two critical
requirements of the flow management within datacenters are
performance and reliability. Novel management scheme can
distribute the data flow dynamically to gain better resources
utilization and improve the systemic performance. Reliability
is also very important. Thus providing a stable service with
unstable servers is also a main reason why DFC is proposed.

Though current datacenters may take quite different topolo-
gies, the two main components, servers and interconnects,
always supply similar functions. Commercial servers process
the data and store the resources, while interconnection devices
like switches are responsible for arranging the path of the data
flows. Since most datacenters are hierarchically constructed
with the basic block unit, we give a feedback control model for
datacenters, as shown in Fig.3. Each block utilizes a monitor
to watch the status of servers and send the information to the
DFC Controller. DFC Controller readjusts the workload using
an adaption algorithm, based on the information collected.
Besides, there are two channels in this model: Flow Channel
in real lines and Control Channel in dashed lines.
• Flow Channel

Flow Channel includes the interconnects and servers, it
will support the data transmission path within datacenter.
This channel is an original open-loop controlled system
in this model.

• Control Channel
Control Channel includes three components: the flow sta-
tus monitor, the DFC controller and the interconnections
policy executive. The monitor is deployed in the servers
to gain enough information about the machines’ status
such as CPU status, bandwidth and memory utilization,
etc. The executive controls the interconnection devices
according to the flow management policies from the DFC
controller.

We do not try to control the server status directly because
almost all real network systems are dynamic and complicated.
With controllable switches we can achieve a global optimiza-
tion management by only controlling the network flows, which
is quite economical and flexible in modern datacenters with
few switches but lots of servers. With this condition, the
feedback control loop can prove the datacenters to supply
more stable services. Especially, when one server breaks down,
DFC controller will migrate the unsettled workload to other
available servers with the information from the monitor.

Suppose there is one server in the block, the input flow
throughput is p(t), the processing throughput is q(t), then the
queue length l(t) =

∫ t
0 (p(τ)−q(τ))dτ+C (C is constant), whose

Laplace transform is L(s) =
∫ ∞

0 l(t)e−stdt, (s > 0). Suppose p(t)
and q(t) are constant functions (for example, p(t) = Cp, q(t) =

Cq), then L(s) =
Cp−Cq

s2 + C
s . Since the Laplace transform of

p(t) is P(s) =
Cp

s , we can get the block’s transfer function, as
described in(2).

G1(s) =
L(s)
P(s)

=
Cp −Cq

Cps
(2)

With a linear feedback loop G2(s) = −
C f

s , the global transfer
function can be calculated as (3).

G(s) =
G1(s)

1 + G1(s)G2(s)
=

(Cp −Cq)s
Cps2 − (Cp −Cq)C f

(3)

Here we get the transfer function for single-server block
with linear feedback loop. To solve the problem of arranging



workload in blocks with multiple servers, an adaption algo-
rithm should be designed in the Controller.

B. Controller Design

The Controller decides the scheme to adjust the work flow
load among different servers. To obtain an appropriate control
algorithm, we base our design on the mathematic models of the
problem. Assuming the datacenter can support a service with
throughput Q(t), and the i-th server can support a throughput
as Xi(t), thus Q(t) and Xi(t) will meet a equation in (4), which
is also a boundary condition.

n∑
i=1

Xi(t) = λQ(t) ≥ Q(t), λ ≥ 1 (4)

On the other hand, for a single server, too high work load
will overwhelm the machine, while too light load will result in
a waste of energy. With a dynamic work load given, the status
of one server is a combination of CPU and memory utilization,
and the usage rate of other resources. An optimal status point
can be pre-configured for single server. However, the problem
is more complicated with multiple servers together, because
each server may own a special optimal status point. Thus the
goal is to determine the control input u(t) by solving (5).

F(ρ) = min
u(t)

∞∫
0

(
(ρ − ρ)T Q(ρ − ρ)

)
dt, ρ = (ρ1, . . . ρn) (5)

Where ρ =
n∑

i=1

ρi
n In, subject to

n∑
i=1

ρiCi(t) = Q(t), i = 1, . . . n (6)

and
ρi(t) =

Xi(t)
Ci(t)

, i = 1, . . . n (7)

In equation (7), ρi(t) means the busy ratio of server i, while
Ci(t) represents the capacity of the i-th server at time t. Based
on results in equation (4) to (7), an adaption algorithm is given
in Algorithm 1 to distribute workload among multiple servers
in the block.

This adaption algorithm can work right on condition that
all servers are available. With disabled servers, a correctional
scheme is adopted by the Controller to deal with these
situations. If server i is failed, a special correction function
should be introduced. One is described in (8).

ρi(t) = 1, 1 ≤ i ≤ n (8)

Correction function (8) represents that server i is already with
full load, thus no flow can be arranged to it.

C. Discussion

To build a general model, we try to simplify the architecture
of datacenters first. For example, real datacenters may contains
complicated structures between different levels of switches.
In this paper we design the DFC model at the basic block
unit, which can get more precise data. In other hand, there are

Algorithm 1 DFC Adaption Algorithm
Require: ρ = (ρ1 . . . ρn)

1: Init(δ) {Initialize an constant variable}
2: Init(timesleep) {Initialize the adaption interval}
3: Calculate F(ρ) {see equation (5)}
4: while F(ρ) > δ do
5: {Check ρ, i = 1, . . . n}
6: ρmax = GetMax(ρi)
7: ρmin = GetMin(ρi)
8: {Get id of the busiest and empties server}
9: idmax = GetId(ρmax)

10: idmin = GetId(ρmin)
11: {Adjust the workload}
12: Xidmax ←

Xidmax +Xidmin
2

13: Xidmin ←
Xidmax +Xidmin

2
14: Sleep(timesleep)
15: Calculate F(ρ)
16: end while

Fig. 4. A datacenter block with DFC flow management

some assumptions for the model itself, such as the Sensors are
accuracy, and the Actuators are sensitive enough.

V. Evaluation and Result

In this section, we use both the NS2 simulation platform and
datacenter environment to evaluate the prototype of DFC. We
focus on two aspects of the results: reliability and performance.

A. Simulation

To evaluate the reliability of our DFC flow management
mechanism, we design a datacenter model with DFC based
on the NS2 platform. Our DFC model is added into every
block, which consists of 10 servers, as shown in Fig.4. The
Controller can get the status information from Sensor every
0.5 s, and an adaption will be taken after that.

In our experiments, simulation parameters are chosen only
for validation purpose. The throughput of each server is set to
100 Mbps, while the latency is 1 ms for all the links with a
1024 length DropTail queue, thus the maximal throughput for
each block is 1000 Mbps. Each block is required to provide
a total 500 Mbps TCP traffic service. The experiments test
the datacenter’s behavior under three modes. In the “normal”
mode, all servers work normally during the simulation, “sick”



mode means some servers will break down (In this simulation,
2 servers will break down at 1.5 s), while “DFC” mode means
a DFC scheme will take effect in the datacenter to protect the
throughput after some servers break down.

Simulation result is demonstrated in Fig.5. Triangle-curve
represents the throughput under “normal” mode, diamond-
curve represents the “sick” mode, while square-curve repre-
sents the “DFC” mode. Fig.5 compares the throughput under
different modes. In “normal” mode, we can see a 500 Mbps
throughput is provided by the test block from 0.5 s to 9.5
s. In “sick” mode, the throughput gets down to nearly 400
Mbps when 2 servers break down at 1.5 s. In “DFC” mode,
the throughput curve also gets down at 1.5 s, however, due to
the DFC flow management, the throughput then is improved
near to the “normal” throughput of 500 Mbps at 2.0 s. This
is the result of a redistribution of work flows after the DFC
scheme takes action.

B. Experiment

To evaluate the efficiency of DFC mechanism, a prototype
DFC datacenter is built. Topology of a block is similar as
shown in Fig.4. Each block consists of 10 X86-64 commodity-
class servers. For each server, the CPU is Intel Xeon L5335
(2.00 GHz, 4 cores on dual paths) with 4 MByte L2 cache
and memory is of 8 GByte DDRII. Each server can support
a throughput more than 500 Mbps, thus a more than 5 Gbps
throughput can be provide with each block. In the experiment,
to test the DFC model more accurately, we only let each block
provide TCP traffic of 250 Mbps, which is far less than the
maximal bandwidth it can support. The interval time between
Controller’s adaption also is set to 0.5 s, which is the same as
in the simulation part.

The experiments are also carried out under three modes:
“normal”, “sick” and “DFC” mode. Experiment under each
mode lasts for 30 s. In the “normal” mode, all servers work
normally to test the normal running status of the block. For
“sick” and “DFC” modes, one server will break down at 14 s.
In particular, a DFC scheme is enabled at the “DFC” mode.

Fig.6 shows the throughput curves under three modes. The
“normal” mode throughput holds about 250 Mbps for all 30 s,
which indicates the capacity of the block. Throughput in “sick”
mode remains nearly the full 250 Mbps from 0 to 14 s, but
falls down when one server breaks down. In “DFC” mode, the
throughput also falls from nearly 250 Mbps to about 215 Mbps
at 14 s, however, as DFC scheme takes effect, the throughput
recovers to nearly 250 Mbps about 2 seconds later.

In Fig.7, we also compare the throughput between datacen-
ters using usual hash-based flow distribution mechanism and
our DFC mechanism. The hash based mechanism (triangle
block curve) attempts to distribute flows averagely using
address hash, while DFC mechanism (diamond block curve)
distributes the flows according to the status of servers. Result
in Fig.7 indicates that DFC can improve the maximal pro-
cessing capacity of datacenter when breakdown occurs. This
is because DFC taps each server’s processing potential while
protecting it from overload.

Fig. 5. Simulation result of reliability comparison

Fig. 6. Experiment result of reliability comparison

Fig. 7. Experiment result of performance comparison

C. Discussion

All the experimental results under three modes on both NS2
and phototype datacenter prove that DFC model provides a
guarantee of the reliability, while at the same time, DFC im-
proves the performance of datacenters. Though DFC scheme
works well in our experiments, there is still something worthy
investigation from the results. For example, the response sen-



sitivity is ignored by the simulation for the platform limitation.
This is important for applications like video meeting and on-
line games, etc. Although TCP traffic is popular in modern
datacenters, DFC is not designed specially for certain type of
traffic, which will need more experimental supports.

VI. Conclusion and Future work

This paper proposes a Dynamic Feedback Control (DFC)
flow management model within datacenters. The model uses a
feedback control loop which consists of a Sensor, a Controller
and an Actuator to manage the flows within datacenters. In or-
der to improve the performance and reliability of the controlled
datacenter, the adaption algorithms among multiple servers are
also discussed. Simulation and real experimental results prove
that the model can effectively improve the performance and
guarantee the reliability of datacenters, especially when some
servers break down. These results indicate a promising direc-
tion in optimization of flow management within datacenters,
which is also a key contribution of our work. Furthermore,
the DFC model works with general network flows and has
a simple implementation. These features give the model the
flexibility to be deployed in real and large-scale distributed
network systems.

Though the experimental results are encouraging, there is
still some interesting work to do. For example, the response
sensitivity is ignored by the simulation for the platform
limitation. In datacenters, this is important for applications
like video meeting and on-line games, etc. The behavior
analysis of the control loop under different types of real
traffic is also an interesting research topic. The future work
will include the research on sensitivity analysis for the DFC
model and experiments in different types of real heterogeneous
datacenters.
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