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Abstract—Thunder (also called Xunlei) is the most popular P2P 

file sharing application in China and probably the most popular 

P2P software in term of traffic volume and number of users. 

Precisely identifying Thunder traffic can help network 

administrators to efficiently manage their networks. Traditional 

methods of identifying P2P traffic such as port-based or 

content-based approaches are ineffective to Thunder traffic, 

because of its dynamic packet format, flexible port numbers, and 

payload encryption. In this paper, we developed a novel Heuristic 

Message Clustering approach (HMC) to identify Thunder traffic, 

and obtain its state machine and key transaction cycles , thus 

identifying Thunder traffic fast and accurately. We first evaluate 

our method in a controlled environment and then with real 

campus traces. The results show that HMC is able to identify 

Thunder flows with high precision and low error rate. We will 

further investigate how to extend the proposed method extended 

to other applications with unknown protocols and dynamic 

formats as well.  
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I. INTRODUCTION 

P2P applications have consumed the largest portion of 
global network bandwidth in the recent years. As reported in 
[1], the percentage of P2P traffic on the Internet keeping over 
50% during 2006 to 2008. Thunder (Xunlei) is one of the most 
popular P2P file sharing tools in China. It is claimed that the 
total number of Thunder users is about 3,290 million and active 
users per month are over 1,660 million now [4]. Thunder is 
growing rapidly due to its extraordinary fast download speed. 
Furthermore, Thunder supports BT and eMule formats for file 
sharing. Thunder describes itself as a Peer to Server and Peer 
(P2SP) system, which integrates isolated server resources and 
extensive user resources together to provide stable and fast file 
sharing services. Although such a P2SP system is 
fundamentally similar to other P2P file sharing systems, the 
wide acceptance of Thunder shows the effectiveness of 
peer-assistance in distributed file sharing.  

Identifying Thunder traffic has significant impacts because 
Thunder causes a few severe issues in spite of its spectacular 

popularity. (1) Network Management －  ISPs are highly 

concerned about Thunder traffic, especially in China. Related 

issues include traffic and performance monitoring and control, 
traffic classifying strategies, and billing. In particular, Thunder 
greedily consumes a large amount of bandwidth, hurting the 
performance of other applications. (2) Increasing Research 
Interest. Due to the rapid deployment of Thunder, it attracts 
more and more interests from both academic and industry. (3) 
Spread of pirated copies. Thunder prompts the spread of 
pirated software, videos, games, etc by P2P file sharing. 

Unfortunately, we still do not have an effective way to 
identify Thunder traffic. In practice, the most common 
approach to prohibit the use of Thunder is to block common 
Thunder ports and main Thunder servers. However, as we 
discussed in the following, simply blocking ports and main 
servers is proved ineffective. In this paper, we propose a 
practical and effective framework to recognize Thunder traffic 
based on sessions. Through a great amount of experiments, 
analysis and observations, we have derived a rough structure of 
Thunder protocol. To deal with the dynamic format of Thunder 
structure, we have designed a Heuristic Message Clustering 
(HMC) technique to obtain its state machine and key 
transaction cycles. We have conducted both experiments and 
theoretical analysis to evaluate the proposed method. 

The main contributions of this paper are: (1) The properties 
and structure of Thunder protocol are extracted and 
summarized for practical use. The key cycles of Thunder 
interactive process are obtained to indicate the internal 
fundamental actions of Thunder. (2) We have developed a 
novel and scalable HMC to identify Thunder traffic effectively. 
(3) The proposed framework is applicable to other proprietary 
protocol with dynamic ports, dynamic formats, and encrypted 
payloads.  

The paper is organized as follows. We discuss related work 
in Section 2, and introduce the Thunder work flow and protocol 
in Section 3. We present our solution in Section 4, combining 
message clustering technique and heuristic conditions. We 
report our experiment evaluation results in Section 5 and 
conclude the paper and present future work in Section 6. 



 

II. RELATED WORK 

P2P traffic identification has been addressed in [2, 7, 9-15]. 
For the first-generation P2P applications, it is easily classify 
their traffic based on well-known port numbers. However, the 
use of arbitrary ports and encrypted payloads make port-based 
approaches infeasible as reported [12]. Other methods [2, 15] 
are based on the behaviors of P2P nodes and connections, such 
as nodes behavior analysis, network diameter measuring, and 
flow connection pattern detecting, without checking port 
number and packet payload. These methods are not accurate 
enough to tell the targeted P2P traffic from other traffic that has 
similar patterns and behaviors. Another kind of methods [9, 13] 
is to differentiate P2P traffic through application signatures. 
Such methods work well on P2P applications that have 
plaintext format or fixed procedures. Unfortunately, Thunder’s 
payloads are encrypted and its packet format is dynamic. By 
maintaining network connectivity and clients’ state, the 
signaling behavior of P2P systems [10] can be used to identify 
their traffic. However, further research is desired to verify 
whether the signaling behavior can be influenced by the 
circumstances, such as network conditions or server actions. 
Flow properties and statistical information are also used to 
detect P2P traffic in [11, 14, 7]. These approaches help but still 
are not able to deal with protocol dynamics. A recent work on 
Thunder [8] discusses its working procedure and service 
policies. But the protocol structure summarized in [8] is not 
accurate in all cases. It did not address the issue of identifying 
Thunder traffic as well.  

Our analysis of Thunder protocol exploits the message 
clustering idea in [3]. While in [3], they primarily focus on 
host-level analysis, we mainly use network-level analysis with 
some reverse engineering help. Clearly, combining both 
approaches is a more powerful solution. In this paper, we 
emphasize gaining understanding at the network level to 
complement the host-level method, e.g., a host-level method is 
inapplicable when the code is inaccessible. 

III. THUNDER PROTOCOL STRUCTURE 

A. Thunder Work Flow  

Thunder supports many types of download and P2P 
protocols, including HTTP, FTP, BT, Emule and Kad. In [6, 8], 
the authors have analyzed a portion of Thunder working 
process. However, the internal structures of Thunder protocol 
are ignored. To better understand its complex properties, we 
need to first check its work flow. Our analysis is based on our 
observations on a large amount of Thunder traffic and expands 
existing results [6, 8].  

A typical working process of Thunder involves three steps: 
login, idling and file sharing which are shown in Fig. 1. 

(1) Login. Both TCP and UDP are used in this process. For 
registered users, a login process includes establishing 
connections to Thunder main servers, and receiving 
individual options and history information. The main 
servers include resource servers, advertisement servers, 
registering servers, news server, multimedia servers, etc.  

 

(2) Idling. A client has four types of interactions with Thunder 
servers when idling: (a) an ICMP interaction to a keep- 
alive server, (b) an UDP connection to a node server, (c) 
an UDP connection to a main server, and (d) an UDP 
connection to another main server. If there are other 
Thunder nodes in the same LAN, UDP interactions will be 
conducted between these nodes. Each interaction has its 
respective interval. 

(3) File sharing. When sharing files, a client first establishes 
TCP connections to resource servers. After receiving 
replies, the client will share files with multiple Thunder 
peers via mainly UDP connections and a few TCP 
connections. So, the Thunder file sharing protocol is only 
shown in this process and the majority of Thunder traffic 
belongs to this process. This paper mainly focuses on file 
sharing traffic. 

B. The Protocol Structure 

Because Thunder is a proprietary application and its 
payload is encrypted, the details of Thunder protocol are still 
unknown up to now. We have observed a great amount of 
Thunder traffic, and find that a Thunder packet can be divided 
into two parts: Thunder Header and Thunder Body, as shown in 
Fig.2.  

 Thunder Header. The Header part is mandatory, including 
Command and Connection(s). The first 4 bytes of Header 
is the command part that defines operations. Following the 
command is the connection part, which indicates node and 
connection information. By reverse engineering, we find 
that command part includes more than 300 types of 
different commands. The fact that the Header part is not 
encrypted is deduced not only by observation but also by 
reverse engineering and some native characteristics of P2P 
application. If it was encrypted, a well-known third party 
must involve in setting up the shared key between two 
peers who first meet each other. It will create a single 
failure point, not scalable to millions of peers, and also 
hurt performance. Attacking the third party may degrade 
or disable all sharing processes. 

 Thunder Body. The Body part is optional, including the 
payload of sharing data in encryption. This means that a 
Thunder session may include only headers without data 
exchange, e.g., because of failures to fetch resources.  

Fig. 1.  Thunder Work Flow 
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C. Properties of Thunder Protocol 

Based on our observation and analysis of Thunder protocol, 
there are two main challenges to identify Thunder traffic: 

 The dynamic format of Thunder protocol. Commands and 
Thunder headers are difficult to determine. A command 
has a fixed size of 4 bytes; however, the length of the 
Connection part is variable, ranging from dozens of bytes 
to over one hundred bytes, making the Thunder Header 
fairly dynamic. Fig.3 shows most frequently header sizes 
from a real traffic trace. Moreover, an individual Thunder 
packet may include header only, or data only, or both, it 
would still in demand to verify which packet includes 
Thunder header. 

 The protection of traffic. The body part is encrypted, so 
payload-based methods are ineffective to identify Thunder 
traffic.  

These difficulties make existed solutions ineffective when 
facing Thunder traffic. However, despite its dynamic structure, 
there are still several useful heuristic conditions that can 
recognize Thunder protocol and differentiate header and body 

part, described in the following. 

1.  The Headers are not encrypted, but all data parts are 
encrypted. 

2.  There are relatively more 0x00s in the Connection part, 
especially two or three continuous 0x00s, based on our 
collected data. 

3.  Many headers end with three continuous 0x00s, or a string 
with a certain length after two or three continuous 0x00s. 

We can determine the Header part and the Data part in a 
packet based on these heuristics. Feature 1 tells the main 
difference between the header and the body, such that we can 
apply a randomness test to determine Thunder headers and 
bodies. Feature 2 and 3 are special distribution characteristics 
of headers, which are used for further confirming Thunder 
headers.  

Here, we introduce a randomness test on feature 1. The 
chi-square test [5] is proposed to judge randomness of data 
based on the idea that encrypted data is always stochastic. If a 
packet contains both random and nonrandom data, the rough 
boundary between its header and body can be obtained through 
such randomness test. In addition, feature 2 and 3 are utilized 
to separate a header and a body.   

IV. PROPOSED SOLUTION 

In this section, we describe a practical method to recognize 
Thunder traffic. To handle the challenges of identifying 
Thunder traffic as discussed in Section III.C, we use message 
clustering [3] to obtain key interaction cycles of Thunder traffic, 
then integrate the state machine and heuristic conditions to deal 
with the dynamics of Thunder protocol.  

A. Message Clustering 

To deal with the difficulties mentioned in Section III.B, we 
try to find out internal and essential characteristics of Thunder 
traffic. Inspired by the ideas in [3], message clustering 
technique is used to handle target traffic. 

We analyze Thunder traffic and protocol based on sessions 
instead of packets. In a Thunder session, several properties can 
be derived and used for message analysis. First, we need to 
define the message which split Thunder sessions to smaller 
steps. A Thunder message is the practical embodiment of 
Thunder structure presented in the above: a message starts with 
a Thunder Header and ends before the next Thunder Header.  
Several other features of Thunder messages including 
command, header size, and data condition, etc., can also be 
extracted to cluster similar messages together to discover 

Fig. 2.  The Thunder Protocol Structure 
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Fig. 3.  Most Common Header Sizes. 
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Fig. 4.  The SMI diagram 
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internal properties of Thunder protocol. 

Through a great deal of analysis to Thunder traffic by 
message clustering technique, two key interaction cycles are 
clustered: one is for idling process and the other is for file 
sharing process, which represent two main working steps of 
Thunder. In these two key cycles, there are key commands 
indicating interactive operations. Though there are quite a lot of 
command strings, the number of key command strings is 
relatively easy to verify and collect. All Thunder traffic of 
current versions during idling and file sharing observe these 
two key cycles.  

To express key cycles with key commands, we employ two 
simple state machines SMI (state machine for idling, SMI) and 
SMS (state machine for sharing, SMS). In these machines, 
states are embodied by key command names, which are 
obtained from reverse engineering to Thunder applications. We 
will introduce these two state machines in detail in the 
following. 

B. SMI for Idling 

Firstly, the key cycle of UDP interactions between nodes in 
idling process SMI is described as shown in Fig.4. In SMI, 
there is only one state whose name is CMD_TYPEID 
_KEEP_ALIVE_RESP, which is both the start state and the 
accept state. From the observation to Thunder traffic, we 
collect dozens of strings for this command including 
0x32000000, 0xbc010000, 0x2c0b0000, and etc. The length of 
Thunder headers containing these command strings ranges 
from 29 to 57. The only element of transition condition i is 
used to represent the time interval. As shown in the figure, the 
time interval is fixed as 10 seconds. Moreover, all messages in 
this cycle have only Thunder headers without body parts. 

C. SMS for File Sharing 

We apply the same idea of message clustering technique to 
analyze the structure for other complicated transactions. We 
obtain , the state machine SMS of Thunder file sharing process 
as shown in Fig.5. In SMS, possible command strings are too 
much to list, so we only point out its key commands. The start 
state is S0 and the accept state is S3. States {S0, S1, S2} are 
requests to the resource provider or another Thunder peer 
which has the requesting resource. State S3 is downloading 
state. States {S4, S5} aim to find more resources from provider 
peers. The transition condition i represents indeterminate time 
interval, and n is the number of loops which is not fixed. The 

reason why S4 and S5 exist is that Thunder intends to sharing 
file with providers as much as possible.  

Note that command strings may be changed quickly due to 
new versions of the software. However, key cycles are rarely 
altered, at least in several existing versions. So when a new 
version comes out, the method proposed in this paper is still 
effective by adding new key command strings to the 
framework described in IV.D. 

Message clustering is not only useful for protocol analysis, 
but also simplifies the traffic identification. When a key 
Thunder message is verified, the whole session that may 
include hundreds of messages is verified. The inspected 
packets only occupies a small part of the session. Thus to 
identify Thunder traffic becomes to verify key Thunder 
messages, in spite of dynamic Header sizes and formats.  

D. The HMC Solution 

In this section, we present the HMC framework to solve not 
only Thunder classification but also other protocols with 
dynamic format, dynamic ports, and encrypted payloads. The 
HMC framework uses the same techniques mentioned above, 
including message clustering, heuristic conditions, etc, as 
shown in Fig. 6. 

This framework is obtained from Thunder related work but 
designed for more flexible circumstances. In our small-scale 
tests, HCM is effective to many different types of protocols, 
including standard protocols, P2P protocols and some 
unpublished protocols whose traffic can be divided into similar 
messages.  

Fig. 6.  The HMC Framework 
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With the HMC framework, we introduce a concrete state 
machine system to recognize Thunder traffic specifically.  We 
define the state machine M as shown in Fig. 7. 

Because M is used in practical classification, the objective 
of M (except Key Cycles) is consecutive messages composed 
by packets in a session. In the dotted line box, there are 
command box and cycle state machine mentioned in IV.B and 
IV.C. The start state M0 checks several starting messages in a 
session. Due to the structure of Thunder’s protocol and the 
definition of Thunder message, the first packet of a message 
must contain a Thunder header. So in M, the first option is 
based on header check which mainly depends on heuristic 
conditions introduced in III.C. The element h in alphabet 
indicates header check passed, and !h means failed. After these 
messages passing through header check, then key commands 
and key cycles (e.g. SMI and SMS) will be picked up here to 
check if these messages follow Thunder interactive processes. 
In the Command box, there are command strings collected 
from existing Thunder versions. With the previous header 
check, the maximal accuracy can be guaranteed. 

At the same time, the work flow is concise as well. After a 
round of key cycle examination, the final result can be known. 
If passed key cycles in M, the session can be classified as 
Thunder traffic, otherwise it failed. In general, only first 10 to 
20 packets in a session need to be checked to get the result, 
therefore the whole solution is fast as well as precise which 
will be proved by practical experiments in the next section. 

The performance of the HMC framework is also essential in 
practice. The algorithm complexity of the framework (M) will 
be calculated here. Assume there are n sessions in the traffic. 
And each session need check first A messages where A can be 
set as a constant number (for example A=10). Each message 
need to check first B bytes (in M B=4) as command. Then 
HCM need to compare real messages with given key cycles, 
and in the worst case, needing A times comparisons. So the 
algorithmic complexity of M (HCM as well) is O(n)= ABn 
because A and B are constant numbers. The space complexity 
of HCM depends on the numbers of commands and cycles. In 
M there are only two cycles so the majority part is the size of 
the command box.  

The framework proposed has three main advantages: 
effective, fast and flexible. 

TABLE 1 Results of LAN Dataset 

 Number FP    FP% FN    FN% 

Accurate  51746 －     － －     － 

HMC  51123 98     0.19 721    1.39 

Total 603173 －     － －     － 

 

V. EXPERIMENTS AND VALUATIONS 

In this section, we present our experimental results in order 
to test the proposed method on different traffic traces. In 
particular, we choose two different datasets: 

 LAN: refers to a 48-hour long trace collected from a LAN 
connecting to Unicom , a major ISP in China, in May 2009. 
This dataset is relative small but under our complete 
control. We recorded the use of Thunder on each computer 
in the LAN. During the capturing period, different users 
connected to Internet through the LAN and varies kinds of 
applications were kept online and in use. Thus we can get 
accurate records for reference.  

 EDU: refers to a 1-hour long trace collected from our 
campus access link in May 2009. This dataset is more 
complex. We choose this dataset for the purpose of not 
only verifying our algorithms but also providing real usage 
of Thunder in China.  

A. Measurement Results of LAN 

The measurement results of dataset LAN are shown in 
Table 1, the actual result acting as the contrast to the results 
from our method introduced in the previous section. The False 
positive (FP) and false negative (FN) are counted in the number 
of flows. The FP rate is defined as the number of false positive 
flows over the actual number of Thunder flows we started. The 
FN rate is defined as the number of false negative flows over 
the actual number of Thunder flows we started. 

The result is varied with different degrees of heuristic 
conditions and randomness test. When choosing a wide range 
of heuristic conditions, we have a low FN rate but the FP rate 
increases because other protocols such as IM and anonymous 
communication applications may have similar structure and 
encrypted payloads as well. However, when we set strict rules 
the FP rate is deduced with an increasing FN rate. 

We find an effective setting with many tests. That is, the 
condition differentiating a Thunder header and a Thunder body 
should be most stringent; the condition classifying a Thunder 
header from other protocols should be the second strict 
condition; the randomness test should be the least rigid one. 
With this setting, we obtain the desired results as shown in 
Table 1. 

Because there is no standard method to perfectly identify 
Thunder traffic, we design such a dataset with actual known 
Thunder sessions to confirm the effectiveness of our method. 
The results are promising with both FP and FN rates are below 
1.5%. 

B. Measurement Results of EDU 

In order to prove the accuracy of HMC framework 

further, we design a contrast test called IP-Command whose 

Fig. 7.  The state diagram for M 
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results can be a counterpart to the framework. The contrast test 

uses another classifier to Thunder traffic and obtained as 

follows: (a) first IP addresses of all Thunder active servers are 

collected by related domain name lookups; (b) then all nodes 

that has communication with Thunder servers are gathered and 

their traffic is recognized; (c) then hot commands used in the 

framework are matched in the selected traffic and sessions in 

which hot commands occur multiple times are set as Thunder 

sessions and contrast results.  

The IP-Command test is based on the work flow and 

traffic analysis of Thunder. Thunder clients, whether 

registered or not, need login to Thunder servers, including 

main server, advertisement server, resource server, etc. 

following the program settings during use. So nodes 

communicating with these servers cover all nodes that may 

use Thunder and generate Thunder traffic. Then hot 

commands are used to identify real Thunder traffic based on 

the analysis mentioned in Section IV. If commands appear 

several times at the beginning of packets in a session from 

selected traffic, it may be a Thunder session in a very strong 

possibility. The classifier is reasonable to be contrast test to 

the proposed framework by the behavior check and payload 

inspection. However it can only be a temporary and limited 

classification method because servers may change quickly and 

secretly, and it depends on login step which cannot extend 

freely to other similar protocols. 
To compare results between the framework and the contrast 

classifier, we choose EDU dataset because real traffic can 
perform more reliable and believable results. Table 2 shows the 
results of the experiments.  

The results are obtained by treating IP-Command method 

as accurate, so FP and FN are false positive and false negative 

number of HMC method and FP rate and FN rate are FP and 

FN flow numbers over the IP-Command flow number. In 

Table 2, the FP and FN rates are quite high compared with the 

results of LAN dataset. The FP rate is near 10 percent which 

mainly because that IP-Command neglects the traffic of nodes 

whose Thunder login processes are not captured in EDU 

dataset due to time factor or packet loss. The FN rate is near 5 

percent because IP-Command uses simple command 

inspection and may misjudge some other traffic as Thunder’s. 

Though IP-Command has certain defects, the HMC 

framework show a relatively high accuracy whose FP rate is 

over 90% and FN rate is over 95%. 
Based on the results of the HMC test in Table 2, over one 

fifth of EDU TCP/UDP traffic and about 5% of TCP/UDP 
flows belong to Thunder. Because on our campus P2P 
applications are not prohibited, the usage of Thunder on our 
campus and in the nation is partly exposed by such experiments. 
The Thunder traffic occupies quite a large proportion of traffic 
on campus. However, the use of Thunder is even more popular 
off campus due to that other main ISPs in China provide more 
resources and have more end users than education network. 
Based on reports from [1], about 50% of consumer Internet 
traffic is P2P traffic and assuming China also has the similar 
Internet conditions, Thunder may take about half of all P2P 
traffic in China. Therefore identifying Thunder traffic is even 
more significant than we think before. 

TABLE 2 RESULTS OF EDU DATASET 

 Flows FP   FP% FN  FN% Traffic 

(GB) 

HMC 13721 1273  9.79 550  4.23 6.65 

IP-Command 12998 -  - -  - 5.79 

Total TCP/UDP  283460 -  - -  - 30 

Proportion 

(HMC) 

4.8% -  - -  - 22.2% 

VI. CONCLUSION AND FUTURE WORK 

The main contribution of this paper is to propose a 
framework to solve Thunder like protocols with dynamic 
format and encrypted payloads. The framework can be 
extended easily to identify many emerging protocols. The 
proposed framework is one solid step towards this direction. 
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