

* Mr Chenglong Li is a Ph.D student at Tsinghua Univ.

HMC: A Novel Mechanism for Identifying Encrypted

P2P Thunder Traffic

Chenglong Li* and Yibo Xue

Department of Computer Science & Technology,

Research Institute of Information Technology (RIIT),

Tsinghua University, Beijing, China.

{li-cl07}@mails.tsinghua.edu.cn

{yiboxue}@tsinghua.edu.cn

Yingfei Dong

Dept of Electrical Engineering,

University of Hawaii,

Honolulu, HI 96822.

{yingfei}@hawaii.edu

Abstract—Thunder (also called Xunlei) is the most popular P2P

file sharing application in China and probably the most popular

P2P software in term of traffic volume and number of users.

Precisely identifying Thunder traffic can help network

administrators to efficiently manage their networks. Traditional

methods of identifying P2P traffic such as port-based or

content-based approaches are ineffective to Thunder traffic,

because of its dynamic packet format, flexible port numbers, and

payload encryption. In this paper, we developed a novel Heuristic

Message Clustering approach (HMC) to identify Thunder traffic,

and obtain its state machine and key transaction cycles , thus

identifying Thunder traffic fast and accurately. We first evaluate

our method in a controlled environment and then with real

campus traces. The results show that HMC is able to identify

Thunder flows with high precision and low error rate. We will

further investigate how to extend the proposed method extended

to other applications with unknown protocols and dynamic

formats as well.

Keywords: P2P; Thunder; Traffic Identification;HCM

I. INTRODUCTION

P2P applications have consumed the largest portion of
global network bandwidth in the recent years. As reported in
[1], the percentage of P2P traffic on the Internet keeping over
50% during 2006 to 2008. Thunder (Xunlei) is one of the most
popular P2P file sharing tools in China. It is claimed that the
total number of Thunder users is about 3,290 million and active
users per month are over 1,660 million now [4]. Thunder is
growing rapidly due to its extraordinary fast download speed.
Furthermore, Thunder supports BT and eMule formats for file
sharing. Thunder describes itself as a Peer to Server and Peer
(P2SP) system, which integrates isolated server resources and
extensive user resources together to provide stable and fast file
sharing services. Although such a P2SP system is
fundamentally similar to other P2P file sharing systems, the
wide acceptance of Thunder shows the effectiveness of
peer-assistance in distributed file sharing.

Identifying Thunder traffic has significant impacts because
Thunder causes a few severe issues in spite of its spectacular

popularity. (1) Network Management － ISPs are highly

concerned about Thunder traffic, especially in China. Related

issues include traffic and performance monitoring and control,
traffic classifying strategies, and billing. In particular, Thunder
greedily consumes a large amount of bandwidth, hurting the
performance of other applications. (2) Increasing Research
Interest. Due to the rapid deployment of Thunder, it attracts
more and more interests from both academic and industry. (3)
Spread of pirated copies. Thunder prompts the spread of
pirated software, videos, games, etc by P2P file sharing.

Unfortunately, we still do not have an effective way to
identify Thunder traffic. In practice, the most common
approach to prohibit the use of Thunder is to block common
Thunder ports and main Thunder servers. However, as we
discussed in the following, simply blocking ports and main
servers is proved ineffective. In this paper, we propose a
practical and effective framework to recognize Thunder traffic
based on sessions. Through a great amount of experiments,
analysis and observations, we have derived a rough structure of
Thunder protocol. To deal with the dynamic format of Thunder
structure, we have designed a Heuristic Message Clustering
(HMC) technique to obtain its state machine and key
transaction cycles. We have conducted both experiments and
theoretical analysis to evaluate the proposed method.

The main contributions of this paper are: (1) The properties
and structure of Thunder protocol are extracted and
summarized for practical use. The key cycles of Thunder
interactive process are obtained to indicate the internal
fundamental actions of Thunder. (2) We have developed a
novel and scalable HMC to identify Thunder traffic effectively.
(3) The proposed framework is applicable to other proprietary
protocol with dynamic ports, dynamic formats, and encrypted
payloads.

The paper is organized as follows. We discuss related work
in Section 2, and introduce the Thunder work flow and protocol
in Section 3. We present our solution in Section 4, combining
message clustering technique and heuristic conditions. We
report our experiment evaluation results in Section 5 and
conclude the paper and present future work in Section 6.

II. RELATED WORK

P2P traffic identification has been addressed in [2, 7, 9-15].
For the first-generation P2P applications, it is easily classify
their traffic based on well-known port numbers. However, the
use of arbitrary ports and encrypted payloads make port-based
approaches infeasible as reported [12]. Other methods [2, 15]
are based on the behaviors of P2P nodes and connections, such
as nodes behavior analysis, network diameter measuring, and
flow connection pattern detecting, without checking port
number and packet payload. These methods are not accurate
enough to tell the targeted P2P traffic from other traffic that has
similar patterns and behaviors. Another kind of methods [9, 13]
is to differentiate P2P traffic through application signatures.
Such methods work well on P2P applications that have
plaintext format or fixed procedures. Unfortunately, Thunder’s
payloads are encrypted and its packet format is dynamic. By
maintaining network connectivity and clients’ state, the
signaling behavior of P2P systems [10] can be used to identify
their traffic. However, further research is desired to verify
whether the signaling behavior can be influenced by the
circumstances, such as network conditions or server actions.
Flow properties and statistical information are also used to
detect P2P traffic in [11, 14, 7]. These approaches help but still
are not able to deal with protocol dynamics. A recent work on
Thunder [8] discusses its working procedure and service
policies. But the protocol structure summarized in [8] is not
accurate in all cases. It did not address the issue of identifying
Thunder traffic as well.

Our analysis of Thunder protocol exploits the message
clustering idea in [3]. While in [3], they primarily focus on
host-level analysis, we mainly use network-level analysis with
some reverse engineering help. Clearly, combining both
approaches is a more powerful solution. In this paper, we
emphasize gaining understanding at the network level to
complement the host-level method, e.g., a host-level method is
inapplicable when the code is inaccessible.

III. THUNDER PROTOCOL STRUCTURE

A. Thunder Work Flow

Thunder supports many types of download and P2P
protocols, including HTTP, FTP, BT, Emule and Kad. In [6, 8],
the authors have analyzed a portion of Thunder working
process. However, the internal structures of Thunder protocol
are ignored. To better understand its complex properties, we
need to first check its work flow. Our analysis is based on our
observations on a large amount of Thunder traffic and expands
existing results [6, 8].

A typical working process of Thunder involves three steps:
login, idling and file sharing which are shown in Fig. 1.

(1) Login. Both TCP and UDP are used in this process. For
registered users, a login process includes establishing
connections to Thunder main servers, and receiving
individual options and history information. The main
servers include resource servers, advertisement servers,
registering servers, news server, multimedia servers, etc.

(2) Idling. A client has four types of interactions with Thunder
servers when idling: (a) an ICMP interaction to a keep-
alive server, (b) an UDP connection to a node server, (c)
an UDP connection to a main server, and (d) an UDP
connection to another main server. If there are other
Thunder nodes in the same LAN, UDP interactions will be
conducted between these nodes. Each interaction has its
respective interval.

(3) File sharing. When sharing files, a client first establishes
TCP connections to resource servers. After receiving
replies, the client will share files with multiple Thunder
peers via mainly UDP connections and a few TCP
connections. So, the Thunder file sharing protocol is only
shown in this process and the majority of Thunder traffic
belongs to this process. This paper mainly focuses on file
sharing traffic.

B. The Protocol Structure

Because Thunder is a proprietary application and its
payload is encrypted, the details of Thunder protocol are still
unknown up to now. We have observed a great amount of
Thunder traffic, and find that a Thunder packet can be divided
into two parts: Thunder Header and Thunder Body, as shown in
Fig.2.

 Thunder Header. The Header part is mandatory, including
Command and Connection(s). The first 4 bytes of Header
is the command part that defines operations. Following the
command is the connection part, which indicates node and
connection information. By reverse engineering, we find
that command part includes more than 300 types of
different commands. The fact that the Header part is not
encrypted is deduced not only by observation but also by
reverse engineering and some native characteristics of P2P
application. If it was encrypted, a well-known third party
must involve in setting up the shared key between two
peers who first meet each other. It will create a single
failure point, not scalable to millions of peers, and also
hurt performance. Attacking the third party may degrade
or disable all sharing processes.

 Thunder Body. The Body part is optional, including the
payload of sharing data in encryption. This means that a
Thunder session may include only headers without data
exchange, e.g., because of failures to fetch resources.

Fig. 1. Thunder Work Flow

.

Thunder Main Servers

The User

Thunder Resources

(1)

(2).c d

Keep-Alive Server

Node Server

(2).a

(2).b

(3).a

(3).b

C. Properties of Thunder Protocol

Based on our observation and analysis of Thunder protocol,
there are two main challenges to identify Thunder traffic:

 The dynamic format of Thunder protocol. Commands and
Thunder headers are difficult to determine. A command
has a fixed size of 4 bytes; however, the length of the
Connection part is variable, ranging from dozens of bytes
to over one hundred bytes, making the Thunder Header
fairly dynamic. Fig.3 shows most frequently header sizes
from a real traffic trace. Moreover, an individual Thunder
packet may include header only, or data only, or both, it
would still in demand to verify which packet includes
Thunder header.

 The protection of traffic. The body part is encrypted, so
payload-based methods are ineffective to identify Thunder
traffic.

These difficulties make existed solutions ineffective when
facing Thunder traffic. However, despite its dynamic structure,
there are still several useful heuristic conditions that can
recognize Thunder protocol and differentiate header and body

part, described in the following.

1. The Headers are not encrypted, but all data parts are
encrypted.

2. There are relatively more 0x00s in the Connection part,
especially two or three continuous 0x00s, based on our
collected data.

3. Many headers end with three continuous 0x00s, or a string
with a certain length after two or three continuous 0x00s.

We can determine the Header part and the Data part in a
packet based on these heuristics. Feature 1 tells the main
difference between the header and the body, such that we can
apply a randomness test to determine Thunder headers and
bodies. Feature 2 and 3 are special distribution characteristics
of headers, which are used for further confirming Thunder
headers.

Here, we introduce a randomness test on feature 1. The
chi-square test [5] is proposed to judge randomness of data
based on the idea that encrypted data is always stochastic. If a
packet contains both random and nonrandom data, the rough
boundary between its header and body can be obtained through
such randomness test. In addition, feature 2 and 3 are utilized
to separate a header and a body.

IV. PROPOSED SOLUTION

In this section, we describe a practical method to recognize
Thunder traffic. To handle the challenges of identifying
Thunder traffic as discussed in Section III.C, we use message
clustering [3] to obtain key interaction cycles of Thunder traffic,
then integrate the state machine and heuristic conditions to deal
with the dynamics of Thunder protocol.

A. Message Clustering

To deal with the difficulties mentioned in Section III.B, we
try to find out internal and essential characteristics of Thunder
traffic. Inspired by the ideas in [3], message clustering
technique is used to handle target traffic.

We analyze Thunder traffic and protocol based on sessions
instead of packets. In a Thunder session, several properties can
be derived and used for message analysis. First, we need to
define the message which split Thunder sessions to smaller
steps. A Thunder message is the practical embodiment of
Thunder structure presented in the above: a message starts with
a Thunder Header and ends before the next Thunder Header.
Several other features of Thunder messages including
command, header size, and data condition, etc., can also be
extracted to cluster similar messages together to discover

Fig. 2. The Thunder Protocol Structure

.

Fig. 3. Most Common Header Sizes.

.

Fig. 4. The SMI diagram

.

Start

i=10s

Start = CMD_TYPEID

_HUB_KEEP_ALIVE_RESP

internal properties of Thunder protocol.

Through a great deal of analysis to Thunder traffic by
message clustering technique, two key interaction cycles are
clustered: one is for idling process and the other is for file
sharing process, which represent two main working steps of
Thunder. In these two key cycles, there are key commands
indicating interactive operations. Though there are quite a lot of
command strings, the number of key command strings is
relatively easy to verify and collect. All Thunder traffic of
current versions during idling and file sharing observe these
two key cycles.

To express key cycles with key commands, we employ two
simple state machines SMI (state machine for idling, SMI) and
SMS (state machine for sharing, SMS). In these machines,
states are embodied by key command names, which are
obtained from reverse engineering to Thunder applications. We
will introduce these two state machines in detail in the
following.

B. SMI for Idling

Firstly, the key cycle of UDP interactions between nodes in
idling process SMI is described as shown in Fig.4. In SMI,
there is only one state whose name is CMD_TYPEID
_KEEP_ALIVE_RESP, which is both the start state and the
accept state. From the observation to Thunder traffic, we
collect dozens of strings for this command including
0x32000000, 0xbc010000, 0x2c0b0000, and etc. The length of
Thunder headers containing these command strings ranges
from 29 to 57. The only element of transition condition i is
used to represent the time interval. As shown in the figure, the
time interval is fixed as 10 seconds. Moreover, all messages in
this cycle have only Thunder headers without body parts.

C. SMS for File Sharing

We apply the same idea of message clustering technique to
analyze the structure for other complicated transactions. We
obtain , the state machine SMS of Thunder file sharing process
as shown in Fig.5. In SMS, possible command strings are too
much to list, so we only point out its key commands. The start
state is S0 and the accept state is S3. States {S0, S1, S2} are
requests to the resource provider or another Thunder peer
which has the requesting resource. State S3 is downloading
state. States {S4, S5} aim to find more resources from provider
peers. The transition condition i represents indeterminate time
interval, and n is the number of loops which is not fixed. The

reason why S4 and S5 exist is that Thunder intends to sharing
file with providers as much as possible.

Note that command strings may be changed quickly due to
new versions of the software. However, key cycles are rarely
altered, at least in several existing versions. So when a new
version comes out, the method proposed in this paper is still
effective by adding new key command strings to the
framework described in IV.D.

Message clustering is not only useful for protocol analysis,
but also simplifies the traffic identification. When a key
Thunder message is verified, the whole session that may
include hundreds of messages is verified. The inspected
packets only occupies a small part of the session. Thus to
identify Thunder traffic becomes to verify key Thunder
messages, in spite of dynamic Header sizes and formats.

D. The HMC Solution

In this section, we present the HMC framework to solve not
only Thunder classification but also other protocols with
dynamic format, dynamic ports, and encrypted payloads. The
HMC framework uses the same techniques mentioned above,
including message clustering, heuristic conditions, etc, as
shown in Fig. 6.

This framework is obtained from Thunder related work but
designed for more flexible circumstances. In our small-scale
tests, HCM is effective to many different types of protocols,
including standard protocols, P2P protocols and some
unpublished protocols whose traffic can be divided into similar
messages.

Fig. 6. The HMC Framework

.

APP
Traffic

Message
Clustering

Key Commands
& Key Cycles

Message
Verifying

Message? Failedno

Command
Check

yes

Commnad? no

Cycle
Check

yes

Packets in
A Session

Fit? no

SUCC

yes

Fig. 5. The SMS diagram

.

S1 S2 S4 S5S3S0
i i i i i

i

n

S0 = cmd_query_p2phub, S1= cmd_query_p2phub_resp,

S2= cmd_request, S3= cmd_request_resp,

S4= cmd_query_tracker, S5= cmd_query_tracker_resp.

With the HMC framework, we introduce a concrete state
machine system to recognize Thunder traffic specifically. We
define the state machine M as shown in Fig. 7.

Because M is used in practical classification, the objective
of M (except Key Cycles) is consecutive messages composed
by packets in a session. In the dotted line box, there are
command box and cycle state machine mentioned in IV.B and
IV.C. The start state M0 checks several starting messages in a
session. Due to the structure of Thunder’s protocol and the
definition of Thunder message, the first packet of a message
must contain a Thunder header. So in M, the first option is
based on header check which mainly depends on heuristic
conditions introduced in III.C. The element h in alphabet
indicates header check passed, and !h means failed. After these
messages passing through header check, then key commands
and key cycles (e.g. SMI and SMS) will be picked up here to
check if these messages follow Thunder interactive processes.
In the Command box, there are command strings collected
from existing Thunder versions. With the previous header
check, the maximal accuracy can be guaranteed.

At the same time, the work flow is concise as well. After a
round of key cycle examination, the final result can be known.
If passed key cycles in M, the session can be classified as
Thunder traffic, otherwise it failed. In general, only first 10 to
20 packets in a session need to be checked to get the result,
therefore the whole solution is fast as well as precise which
will be proved by practical experiments in the next section.

The performance of the HMC framework is also essential in
practice. The algorithm complexity of the framework (M) will
be calculated here. Assume there are n sessions in the traffic.
And each session need check first A messages where A can be
set as a constant number (for example A=10). Each message
need to check first B bytes (in M B=4) as command. Then
HCM need to compare real messages with given key cycles,
and in the worst case, needing A times comparisons. So the
algorithmic complexity of M (HCM as well) is O(n)= ABn
because A and B are constant numbers. The space complexity
of HCM depends on the numbers of commands and cycles. In
M there are only two cycles so the majority part is the size of
the command box.

The framework proposed has three main advantages:
effective, fast and flexible.

TABLE 1 Results of LAN Dataset

 Number FP FP% FN FN%

Accurate 51746 － － － －

HMC 51123 98 0.19 721 1.39

Total 603173 － － － －

V. EXPERIMENTS AND VALUATIONS

In this section, we present our experimental results in order
to test the proposed method on different traffic traces. In
particular, we choose two different datasets:

 LAN: refers to a 48-hour long trace collected from a LAN
connecting to Unicom , a major ISP in China, in May 2009.
This dataset is relative small but under our complete
control. We recorded the use of Thunder on each computer
in the LAN. During the capturing period, different users
connected to Internet through the LAN and varies kinds of
applications were kept online and in use. Thus we can get
accurate records for reference.

 EDU: refers to a 1-hour long trace collected from our
campus access link in May 2009. This dataset is more
complex. We choose this dataset for the purpose of not
only verifying our algorithms but also providing real usage
of Thunder in China.

A. Measurement Results of LAN

The measurement results of dataset LAN are shown in
Table 1, the actual result acting as the contrast to the results
from our method introduced in the previous section. The False
positive (FP) and false negative (FN) are counted in the number
of flows. The FP rate is defined as the number of false positive
flows over the actual number of Thunder flows we started. The
FN rate is defined as the number of false negative flows over
the actual number of Thunder flows we started.

The result is varied with different degrees of heuristic
conditions and randomness test. When choosing a wide range
of heuristic conditions, we have a low FN rate but the FP rate
increases because other protocols such as IM and anonymous
communication applications may have similar structure and
encrypted payloads as well. However, when we set strict rules
the FP rate is deduced with an increasing FN rate.

We find an effective setting with many tests. That is, the
condition differentiating a Thunder header and a Thunder body
should be most stringent; the condition classifying a Thunder
header from other protocols should be the second strict
condition; the randomness test should be the least rigid one.
With this setting, we obtain the desired results as shown in
Table 1.

Because there is no standard method to perfectly identify
Thunder traffic, we design such a dataset with actual known
Thunder sessions to confirm the effectiveness of our method.
The results are promising with both FP and FN rates are below
1.5%.

B. Measurement Results of EDU

In order to prove the accuracy of HMC framework

further, we design a contrast test called IP-Command whose

Fig. 7. The state diagram for M

.

M0 M1

Failed

Succ
h

!h

yes

no

M2

Command
Box

Cycle State
Machine

yes

no

results can be a counterpart to the framework. The contrast test

uses another classifier to Thunder traffic and obtained as

follows: (a) first IP addresses of all Thunder active servers are

collected by related domain name lookups; (b) then all nodes

that has communication with Thunder servers are gathered and

their traffic is recognized; (c) then hot commands used in the

framework are matched in the selected traffic and sessions in

which hot commands occur multiple times are set as Thunder

sessions and contrast results.

The IP-Command test is based on the work flow and

traffic analysis of Thunder. Thunder clients, whether

registered or not, need login to Thunder servers, including

main server, advertisement server, resource server, etc.

following the program settings during use. So nodes

communicating with these servers cover all nodes that may

use Thunder and generate Thunder traffic. Then hot

commands are used to identify real Thunder traffic based on

the analysis mentioned in Section IV. If commands appear

several times at the beginning of packets in a session from

selected traffic, it may be a Thunder session in a very strong

possibility. The classifier is reasonable to be contrast test to

the proposed framework by the behavior check and payload

inspection. However it can only be a temporary and limited

classification method because servers may change quickly and

secretly, and it depends on login step which cannot extend

freely to other similar protocols.
To compare results between the framework and the contrast

classifier, we choose EDU dataset because real traffic can
perform more reliable and believable results. Table 2 shows the
results of the experiments.

The results are obtained by treating IP-Command method

as accurate, so FP and FN are false positive and false negative

number of HMC method and FP rate and FN rate are FP and

FN flow numbers over the IP-Command flow number. In

Table 2, the FP and FN rates are quite high compared with the

results of LAN dataset. The FP rate is near 10 percent which

mainly because that IP-Command neglects the traffic of nodes

whose Thunder login processes are not captured in EDU

dataset due to time factor or packet loss. The FN rate is near 5

percent because IP-Command uses simple command

inspection and may misjudge some other traffic as Thunder’s.

Though IP-Command has certain defects, the HMC

framework show a relatively high accuracy whose FP rate is

over 90% and FN rate is over 95%.
Based on the results of the HMC test in Table 2, over one

fifth of EDU TCP/UDP traffic and about 5% of TCP/UDP
flows belong to Thunder. Because on our campus P2P
applications are not prohibited, the usage of Thunder on our
campus and in the nation is partly exposed by such experiments.
The Thunder traffic occupies quite a large proportion of traffic
on campus. However, the use of Thunder is even more popular
off campus due to that other main ISPs in China provide more
resources and have more end users than education network.
Based on reports from [1], about 50% of consumer Internet
traffic is P2P traffic and assuming China also has the similar
Internet conditions, Thunder may take about half of all P2P
traffic in China. Therefore identifying Thunder traffic is even
more significant than we think before.

TABLE 2 RESULTS OF EDU DATASET

 Flows FP FP% FN FN% Traffic

(GB)

HMC 13721 1273 9.79 550 4.23 6.65

IP-Command 12998 - - - - 5.79

Total TCP/UDP 283460 - - - - 30

Proportion

(HMC)

4.8% - - - - 22.2%

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is to propose a
framework to solve Thunder like protocols with dynamic
format and encrypted payloads. The framework can be
extended easily to identify many emerging protocols. The
proposed framework is one solid step towards this direction.

ACKNOWLEDGMENT

This work was supported by National High-Tech R&D 863
Program of China under grant No. 2007AA01Z468.

REFERENCE

[1] Cisco Systems. “White Paper: Cisco Visual Networking Index: Forecast
and Methodology, 2008-2013,” June 9, 2009.

[2] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel
traffic classification in the dark,” in Procs. of SIGCOMM, 2005.

[3] P. Comparetti, G. Wondracek, C. Kruegel and E. Kirda, “Prospex:
Protocol Specification Extraction,” In Proc. Of 30th IEEE
Symposium on Security and Privacy, 2009.

[4] http://hr.xunlei.com/introduce.html/.

[5] Knuth, D, “The Art of Computer Programming, Volume 2:
Seminumerical Algorithms,” Addison-Wesley, 1981 (1st ed. 1969).

[6] M. Zhang, C. Chen and N. Brownlee, “A Measurement-Based Study of
Xunlei”, PAM2009, April 1-3, 2009, Seoul, Korea.

[7] W. Moore , and D. Zuev, “Internet Traffic Classification Using Bayesian
Analysis Techniques,” in Prof. of ACM SIGMETRICS 2005.

[8] Shuying Chen, “Analysis of Thunder’s P2SP Structure and Service
Policy,” master thesis, BJTU, 2008.

[9] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable InNetwork
Identification of P2P Traffic Using Application Signatures,” WWW2004,
New York, USA, May 17–22, 2004.

[10] C. Wu, K. Chen, Y. Chang, and C. Lei, “Detecting Peer-to-Peer Activity
by Signaling Packet Counting,” ACM SIGCOMM’08, Seattle,
Washington, USA, August 17–22, 2008.

[11] D. Bonfiglio, M. Mellia, D. Rossi, and P. Tofanelli, “Revealing Skype
Traffic: when randomness plays with you,” ACM SIGCOMM ’07,
Kyoto, Japan, August, 2007.

[12] M. Roughan, S. Sen, O. Spatscheck and N. Duffield, “Class-of-Service
Mapping for QoS: A Statistical Signature-based Approach to IP Traffic
Classification,” Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement. New York: ACM Press, 2004: 135-148.

[13] R. Wang, Y. Liu, Y. Yang, and X. Zhou, “Solving the App-Level
Classification Problem of P2P Traffic Via Optimized Support Vector
Machines,” Proc. of the 6th International Conference on Intelligent
Systems Design and Applications Jinan, China 2006: 534-539.

[14] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic Classification
through Simple Statistical Fingerprinting,” ACM SIGCOMM Computer
Communication Review. New York: ACM Press, 2007: 5-16.

[15] F. Constantinou, and P. Mavrommatis, “Identifying known and
unknown peer-to-peer traffic,” 5th IEEE International Symposium On
Network Computing And Applications, Cambridge, MA USA: IEEE
Xplore, 2006: 93-102.

http://hr.xunlei.com/introduce.html/

