

A Memory Efficient Multiple Pattern Matching
Architecture for Network Security

Tian Song, Wei Zhang
Dept. of Computer Science and Technology

Tsinghua University
Beijing, P.R.China

{songt02, zhwei02}@mails.tsinghua.edu.cn

Dongsheng Wang, Yibo Xue
Microprocessor and SoC Tech. R&D Center

Tsinghua University
Beijing, P.R.China

{wds, yiboxue}@tsinghua.edu.cn

Abstract—Pattern matching is one of the most important
components for the content inspection based applications of
network security, and it requires well designed algorithms and
architectures to keep up with the increasing network speed.
For most of the solutions, AC and its derivative algorithms are
widely used. They are based on the DFA model but utilize large
amount of memory because of so many transition rules. An
algorithm, called ACC, is presented in this paper for multiple
pattern matching. It uses a novel model, namely cached
deterministic finite automate (CDFA). In ACC, by using
CDFA, only 4.1% transition rules for ClamAV (20.8% for
Snort) are needed to represent the same function using DFA
built by AC. This paper also proposes a new scheme named
next-state addressing (NSA) to store and access transition rules
of DFA in memory. Using this method, transition rules can be
efficiently stored and directly accessed. Finally the architecture
for multiple pattern matching is optimized by several
approaches. Experiments show our architecture can achieve
matching speed faster than 10Gbps with very efficient memory
utilization, i.e., 81KB memory for 1.8K Snort rules with total
29K characters, and 9.5MB memory for 50K ClamAV rules
with total 4.44M characters. A single architecture is memory
efficient for large pattern set, and it is possible to support more
than 10M patterns with at most half amount of the memory
utilization compared to the state-of-the-art architectures.

Keywords-pattern matching; string matching; virus scanning;
intrusion detection

I. INTRODUCTION
Computer network has become an essential part of our

daily life. To ensure the safety of network, various network
security measures are taken. Being the most widely deployed
one, firewall ensures information transfer from trusted
sources to destinations by inspecting the packet headers.
However, numerous malicious contents, such as intrusions,
viruses, spam, spyware, can still outplay firewalls by hiding
themselves in the payload of packets. Consequently content
inspection based applications emerged, including intrusion
detection and prevention systems (IDS/IPS), virus scanners,
spam filters, content security management appliance, and et
al. Furthermore, unified threat management system (UTM) is
introduced to incorporate all the functionalities. For these
applications, one of the most challenging tasks is to improve
inspecting speed and capacity to catch up with the rapid
growth of network speed.

As one of the basic operations, multiple pattern matching
is the performance bottleneck of many content inspection or
deep packet inspection based applications. Pattern matching
architectures for network intrusion detection systems have
emerged in the past few years, which can handle thousands
of patterns. A clear trend is that pattern sets of applications
become larger and larger. For example, tens of thousands of
signatures are already common in anti-virus scanners.

In our work, a pattern matching architecture for tens of
thousands of signatures is proposed. The first idea is to use
an algorithm based on a novel model, namely cached DFA
(CDFA), to express the pattern set more efficiently. The
algorithm is called ACC.

The second idea, next state addressing (NSA), is to store
transition rules of finite automata using less memory. It is
achieved by taking states as addresses and employing feature
of the state acting as the next state in DFA or CDFA.

These two ideas both increase the memory efficiency.
Moreover, the architecture for multiple pattern matching is
given with some optimizations for reducing critical path and
the memory utilization.

In conclusion, the contributions of this paper can be
summarized as follows:

• We present an algorithm based on CDFA, which extends
DFA by associating some memory as cache. Compared
to AC, ACC can reduce the number of transition rules in
Snort and ClamAV to 20.8% and 4.1% respectively.

• We present a novel scheme named next-state addressing
(NSA) to store and access transition rules in memory.
Some analyses show that NSA is memory efficient in
usual cases.

• We give several optimizations to shorten critical path and
increase the memory utilization efficiency. The methods
include fine grain multithreading-like pipelining, entry
combination, set-associative policy etc.

• Our approach inherits all the merits of DFA, such as
deterministic matching performance, dynamic update. It
is suitable for implementation on FPGAs and ASICs.
The rest of the paper is organized as follows. In section 2,

we go over the related works in pattern matching. In section
3, we analyze DFA model and explain its limitations. Then
in section 4, we introduce CDFA, our algorithm ACC, NSA
scheme and our architecture in details. Further optimizations

This work is supported by National Natural Science Foundation of China
(No.60673145).

and results about critical path and memory usage are given in
section 5. Finally conclusions are drawn in section 6.

II. RELATED WORKS
Many pattern or string matching architectures have been

proposed in recent years for network security. Most of the
researches focus on pattern matching issue for network
intrusion detection and prevention system (NIDS/NIPS), in
which pattern set consists of about three thousand patterns.

The early researches of pattern matching architecture are
based on programmable logics in FPGAs. The key issue is
how to efficiently map patterns to the circuits of logic on
FPGAs [2,3,4,6,11,21]. Among the related works, I. Sourdis
[11] and C.R.Clark [4] present their architectures to give
several methods to efficiently map patterns on FPGAs.

At the same time, some RAM based architectures for
ASICs were also proposed using Aho-Corasick [19] like
algorithms [1,7,9,10,12,14]. For those architectures, pattern
sets are stored in RAM other than logics. The main issue is
to use less memory to effectively support bigger pattern set
with deterministic high frequency. Lin Tan [12] developed
an approach to split the state machines into tiny ones for less
memory. Jan v. Lunteren [1] gave an architecture based on
B-FSM with string set partitioning to achieve the goal.
Some other optimization methods were also proposed by
using bloom filter [7] and TCAM [5].

Besides NIDS/NIPS, some other network applications
also require pattern matching, such as anti-virus scanners
and spam filters. These applications may have much bigger
pattern set than the one in NIDS/NIPS. In this paper we aim
at exploring an efficient pattern matching architecture on
ASICs for most content or deep packet inspection based
security applications. The pattern set ranges from tens of
thousands to hundreds of thousands.

III. PROBLEM ANALYSES
Pattern matching has different meanings in different

context. In our work, patterns can be found anywhere in the
input data. Typically Aho-Corasick(AC) and its derivative
algorithms are used. These algorithms can build a DFA
from pattern set and run it in step for searching. In this
section, we give analyses about the inefficiency of DFA of
AC and present the motivation of our approaches.

Figure 1 shows the DFA of AC for accepting pattern set
of {SEC, SSH}. There are 6 states and 16 transitions in it.

S E
C

s0 S1

!C & !S

!S & !E!S H
S

S

S

S

S

E

s5

s3

s4

s2

!S

1

S
Input character

Serial numbertransition

Legend

{SEC,SSH}
Pattern Set

2

3

4

5

6

7

8

9

10
13

14

16

11

12

4

15

!S

!H&!S&!E

Figure 1. DFA of AC for accepting pattern set {SEC, SSH}

Considered the different functions, all transition rules
can be classified into four categories: basic transitions, cross
transitions, failure transitions and restartable transitions.

• Basic transitions are the ones that successfully accept
pattern set from the beginning state(S0), such as the one
numbered 1-5 in figure 1. They act as the backbone of the
DFA. All states can be decided after the basic transitions
are generated.

• Cross transitions are the ones that transfer from one
pattern to another or one part to another part within one
pattern. They are required because the sub-pattern that
one state accept and represent may be the same as the
prefix of other patterns or this pattern itself, such as
transition No.6.

• Restartable transitions transfer current state to the next
states of S0. They restart the procedure of matching of
DFA, such as transition No.7-10.

• Failure transitions transfer current state to S0, which stand
for failure in stepping forward of the matching. In figure
1, 11-16 belong to this category.
Because more transitions will consume more memory in

AC like algorithms, optimizations are proposed to reduce
the number of transitions.

Although the four categories are not explicitly proposed,
Jan v. Lunteren[1] successfully reduced all the failure and
restartable transitions to at most 256 transitions using the
priority approach. He set failure and restartable transitions a
priority of 0 and 1 respectively. Then the natural feature of
lower priority can exploit “don’t care” technique, which
does not care the accepting characters using lower priority,
so that all failure transitions are combined to one transition
(lowest priority with “don’t care”). Similarly, restartable
transitions are combined to 256 transitions (lower priority
with “don’t care”). Without distinguishing cross transitions
and basic transitions, he set both of them priority of 2.

In our work, the motivation is to reduce the cross
transitions, because they outnumber all the other ones. Cross
transitions represent common sub-patterns, and we cannot
efficiently avoid them by selecting pattern set. A natural
method is to partition the pattern set to many unrelated
smaller ones, handled by individual DFAs, so as to avoid
common sub-patterns. Here we give some statistics based on
Snort and ClamAV rules to evaluate this natural method.

Snort[16] is an open source network intrusion detection
system consisting of thousands of patterns. We use one
pattern set of 2005, which has about 3000 patterns. After
eliminating duplicated ones, there are 1785 different
patterns left. It stands for a moderate set.

ClamAV [17] is an open source anti-virus system with a
daily updated signature set. The set of Oct. 8, 2006 is used
with about 50000 signatures. After eliminating duplicated
ones, there are 49644 patterns left. It stands for a large set.

In our statistics, a pattern set is divided into smaller ones
by the method of even partition on the number of patterns.
For example, a pattern set with 256 patterns can be divided
into two smaller sets with 128 patterns each. During the
process of partitioning, no optimization is used. Because

 (a) (b)

Figure 2. Statistics of basic and cross transitions

Figure 3. 1-step and n-step cross transitions

(a) (b)

Figure 4. Statistics of 1-step and n-step cross transitions

failure and restartable transitions can be optimized to at
most 256 [1], they are not counted in statistics.

In figure 2, (a) and (b) show the trend of the number of
transitions(“tran-rules” for short) in different categories in
Snort and ClamAV set respectively. The number of subsets
is named “subset number”. For subsets, the results are the
sum of all related ones in the subsets. As we can see, the
total number of transitions is changing with the number of
cross ones. The more subsets a pattern set has, the less total
transitions it is. However, for larger set, such as ClamAV,
the method of partition still results in huge cross transitions.

To further the understanding of cross transitions, they
are classified into two types: 1-step cross transition and n-
step (n>1) cross transition, shown in figure 3 for example.

Figure 3 shows the DFA of AC for pattern set {SEC,
SSH, ECC}. Transition 1 is a 1-step cross transition because
one-character prefix of “SEC” matches substring of “SSH”.
Transition 2 is an n-step cross transition because two-
character prefix of “ECC” matches substring of “SEC”.

Taking real patterns as example, figure 4 (a) and (b)
show respectively the number of 1-step and n-step cross
transitions. Obviously, the number of 1-step is the major
part of all cross transitions, even of all transitions. The
proportion of 1-step becomes larger when the pattern set
becomes larger.

State Register

 Tran-rules Memory
&Tran-rules Selector

Input
Character

State
Register

 Tran-rules Memory
&Tran-rules Selector

Input
Character

Cache

(a) (b)

Figure 5. DFA and CDFA

From our research, we believe that the reason why cross
transition rules in AC like algorithms cannot be efficiently
optimized or eliminated is because of their basic model, i.e.,
DFA. To improve the efficiency, a more suitable basic
model for pattern matching algorithms is needed. In our
work, a novel model, namely cached DFA, is proposed,
which is the basis of our solution.

IV. OUR APPROACH

A. Cached Deterministic Finite Automata
As illustrated in figure 5(a), the traditional DFA is a

simple and concise model. The transitions are stored in
transition rules (“tran-rules”) memory and accessed by tran-
rules selector. The next state is only determined by input
character and current state (stored in state register).

We extend the traditional DFA model by using certain
number of registers as cache (only one register is used in
this work), as figure 5 (b) shows. Then some information
can be temporarily stored and employed.

The new model is named as cached DFA (CDFA),
because the cache acts as an internal structure and is
handled by CDFA automatically, similar to the cache in
memory systems. With cached states, CDFA extends DFA
with the capability of temporary memory. The next state in
CDFA is determined not only by input character and current
state but also the cached states, which is the main difference
between DFA and CDFA.

A CDFA is a 7-tuple, 0{ , , , , , , }K s F N δ θΣ , concluding

• A finite set of states, K
• A finite input character set, called “alphabet”, ∑
• A start state, 0s
• A set of accepting states, F K⊆
• The number of cache size, N, in this paper N=1
• A transition function that , : NK K Kδ × ×Σ →
• A caching function, : K Kθ × Σ →

For CDFA, the next state is determined by current state,
current input and N cache states, which is described by
transition function. The N cache states are handled by the
policy of caching function.

Another important difference in CDFA from DFA is that
caching function and transition function are both user-
defined. It is understandable if we take various policies for
caching in memory system as an example.

B. Pattern Matching Algorithm based on CDFA
AC and its derivative algorithms are all based on DFA.

Here we propose a multiple pattern matching algorithm
based on CDFA, called AC-CDFA (ACC). The process of
ACC is similar to AC except the operation of CDFA. It has
all the merits of AC and produces much less transitions.

The basic idea of ACC is to dynamically generate and
accept all 1-step cross transitions by using CDFA, so that 1-
step ones are no longer stored in memory. That is, all 1-step
cross transitions in DFA are eliminated in CDFA. As the
major part is eliminated, ACC can save much memory space.

At the preprocessing stage, while CDFA is built from a
pattern set, only basic transitions and n-step cross transitions
called c-trans in original DFA are generated

At the matching stage, CDFA accepts input characters
using transition function and caching function.

Transition function δ , which is used to generate next
state, is defined as follows. The next state is first determined
by input character and current state. If there is no
corresponding c-trans, the next state is then determined by
input character and cached state (in our algorithm, only one
cached state is used, i.e. N=1).

Caching function θ , which is used to cache state in
CDFA, is defined as follows. If the beginning state s0
accepts current character and step to the state sj by c-trans, sj
is stored as cache state. Otherwise, s0 is stored as cache state.

Actually, in ACC, not only 1-step cross transitions but
also failure and restartable transitions can be dynamically
generated and never required to store. At the matching stage,
the “store-to-cache” operation is always performed at every
cycle. An example of this process is given in figure 6 to
show our algorithm.

In figure 6 (a), an original DFA model for the pattern set
{cross, slice} is given, in which all failure and restartable
transitions are omitted for concision. Transitions numbered
1-3 are 1-step cross transitions. CDFA model is built in
figure 6 (b) for ACC which only consists of basic transitions
(and n-step cross transitions if there are) in original DFA. At

o s
c

r

s
l c

s

i e

l l
r

s0

s1 s2 s3 s4 s5

s6 s7 s8 s9 s10

1 2 3

(a) DFA model with basic and 1-step cross transitions

o

s

c

r

s

l

c

s

i

e

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

$C
ac

he

cycle 0

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

cycle 7

cycle 8

S6

c-trans

input

current

input

S0

store
to

cache

P
rio

rit
y

c-trans

state

next
state

high

low
cached

state

c-trans

P
rio

rit
y high

low

cycle

input

1

c

2

r

3

o

4

s

5

l

6

i

7

c

8

e

S6

(b) CDFA and the process to accept “croslice”

Figure 6. DFA and CDFA model for pattern set {cross, slice}

the same time, a cache is added and the function of state
transfer is changed. The process to accept the input
“croslice” is taken as an example. When a character comes,
the next state is firstly determined by current c-trans if there
is a proper one, such as S1, S2. If no c-trans are found,
cached state is fetched and used as “current state” to find
proper c-trans, and then next state can be determined. In
cycle 5, there are no c-trans for “S4” to accept character “l”.
Then cached state “S6” is fetched, and there is one transition
from “S6” to “S7” by accepting “l”, so next state is “S7”.

 In ACC, ONE state cache is used to eliminate 1-step
cross transitions. Theoretically, N state caches can be used
in CDFA to eliminate all cross transitions from 1-step to N-
step. Because 1-step cross transitions are the major part, our
work processes them first. In appendix, a proof is given to
show that our algorithm and AC algorithm are equivalent.

With ACC, all 1-step cross transitions in figure 4 can be
eliminated. As a result, 95.9% total transition rules are
released for ClamAV set, and 79.2% for Snort set. For cross
transitions, 96.9% are released for ClamAV set, and 89.9%
for Snort set. In above statistics, failure and restartable
transitions are excluded, because they are easy to control
within 256 transition rules by the priority approach.

C. Next State Addressing Scheme
Our algorithm can be implmented into both software and

hardware solutions for multiple pattern matching. In our
work, we apply it to hardware solution.

When AC like algorithms are used in hardware solutions,
another important issue is how to efficiently store and
access transitions in memory. Here, we present another idea,
namely next state addressing (NSA), to handle this issue.

There are two methods to store and access transitions of
DFA in other papers, using CAM and hashing.

Content-addressable memory (CAM) is a special type of
computer memory, which can compare the input internally
and output the address of matched content in parallel. When
the transitions are stored in CAM, the address can be output
in one cycle and the next state can be found together with a
SRAM. [23] CAMs are good but they consume lots of chip
area, power and cost, because of their internal architectures.

Hashing uses common memory. The address of memory
for transition rules is computed from current state and input
character. Then some candidate items are back for checking.
BART[1] and other hashing methods are relatively chip-area
efficient, but inevitably result in conflicts in hashing item.

The main purpose of next state addressing (NSA) is to
precisely address the proper transition rule for the current
state with common memory. The essence of states in finite
automata is uniquely indexed, which help specify transition
rules. The only useful information is the character state
accepts. NSA store characters only. Compared with other
methods, it stores transition rules more efficiently.

The basic idea of NSA is to exploit the current state in
order to precisely calculate one possible next state, and take
the next state as the address to access the memory of
transition rules. After finding the transition, it is verified by
comparing the incoming character and the accessed one.

o
S1

r s s
S2 S3 S4 S5

Linear trie

ni S7

cross tran
ibasic tran

Figure 7. Linear trie in DFA or CDFA

0x00

Input Translation Table (ITT)

0x00 0x01 0xFF
color : 1
color : 2

…

color : n

si

sj sk

0x01

j - i k - i

… … … …

smsl

0x01 0xFF

l - k m - k Ø

Ø

Ø Ø Ø

Figure 8. Details of ITT

The reason why next (future) state can be used as
address is based on two observations. First, after 1-step
cross transitions (96.9% of all cross transitions for ClamAV,
and 89.9% for Snort) are eliminated, there are a lot of linear
trie in CDFA, as shown in figure 7. Each state in the linear
trie has only one next state. By orderly labeling the states in
linear trie, next state can be calculated from the current state.

 The second observation is that, for each state, the input
characters of all “incoming” transitions are the same no
matter how many and what kind of they are. That is, each
state accepts only one character when it is regarded as “next
state” of one transition. For example, in figure 7, S7 only
accepts character “i” no matter what types of transition.

NSA is proposed based on the two above observations.
To implement the method, states of CDFA (or DFA) should
be specially numbered. During compilation (CDFA or DFA
is built from a pattern set), states are labeled by using the
following algorithm.

• The start state of CDFA (or DFA) is numbered as S0.
• If a state has only one next state, the next state is

numbered one bigger than the current one.
• If a state has several next states, depth-first algorithm

is used to number the next states.
To use next states as addresses, the address (next state)

should be calculated by current state and input. For the
states in the linear trie, the next state can be calculated by
adding one. However, there are some states that have
several next states. (They are fewer in CDFA because of
fewer transitions.) To handle this situation, those states are
individually colored. The color can be considered as the
second number of the state. We use the word “color” just for
avoiding the confusion of state number.

0xea

0x01

…

0x00

ITT
Input Translation Table

Input character

(character) (color)

C
M
Pnext state

=: left
?: right =

(address)

…

(next state) (color)

0x01
0x00

0xff

(address)

TRM-0TRM-1

0: right
others: left

+

color register
state register

1

character

co
lo

r
co

lo
r

st
at

e

MUX

Dual MUX

Zero
check

Figure 9. Overall architecture of NSA scheme

To calculate next state for colored states, a structure named
input translation table (ITT) is used as figure 8 shows. Each
color corresponds to one entry of ITT and each entry has
256 items which correspond to 256 input characters. Each
item stores the result of subtracting next state number from
current state. By state color and input character, next state of
colored state can be calculated by looking up ITT table. In
ITT table, Ø means null value, which is actually invalid.
The next state is calculated differently for colored and non-
colored state using the following equation.

_ 1, _ 0
_

_ (, _), _ ! 0
current state if current color

next state
current state itt input current color if current color

+ == + =
Besides the basic idea of NSA, NSA scheme for storing

and accessing transitions consists of an optimization. That is,
a standalone small memory is used to store all transitions
from S0, which is named as transition rules’ memory zero
(TRM-0). TRM0 is a lookup table structure that has 256
entries indexed by all possible input characters. Each entry
stores the state after S0 accepting the addressed character or
S0. Details can be found in [1]. The other transitions are
stored in transition rules’ memory 1 (TRM-1).

The overall architecture of NSA scheme is shown in
figure 9. Some trivial details are omitted.

In the NSA scheme, the next state is firstly calculated.
Then the TRM-1 is secondly accessed via next state as
address. Then the result is compared with the input
character. If characters are the same, CDFA steps forward
and the next state and the color are turned into current ones.
If they are different, the output state and color of TRM-0 are
set to the current ones. It means that failure or restartable
transition is performed.

D. Our Pattern Matching Architecture
Our pattern matching architecture incorporates our ACC

algorithm based on CDFA (for fewer transitions) and NSA
scheme (for effectively storing transitions), as shown in
figure 10 (Some trivial details are omitted for concision).

In our architecture, ITT and TRM-1 are designed to use
dual port memory, so that state register and state cache can
access them in parallel. (Single port memory can also be

0xea

0x01

…

0x00

Input character

0: right
others: left

+

1

(character) (color)

CMP
next state

=

(address)

(next state) (color)

(address)=

CMP

color

next
state

2

11 22

TRM-1
(dual port)

TRM-0

3 3

color register
state register

MUX
0: right

others: left

+

1

color cache
state cache

co
lo

r
co

lo
r

color

char

st
at

est
at

e

char

st
at

e

co
lo

r

in-port-1

in-port-2

out-port-2
out-port-1

in-port-1

in-port-2
out-port-1

out-port-2

ITT (dual port)

rpt

rst

MUX

Tri MUX 1
1 12 23 3

Figure 10. Our pattern matching architecture

used regardless of parallelism accessing.) One Tri-MUX is
used as the function for priority switching. It accepts three
sets of inputs (three colors and three states) and outputs one
color and state based on two control signals. The control
signals are results of two CMP (compare) units, numbered
as “1” and “2”. The function of Tri-MUX is

(, ,"1"), "1" , _
(,) (, ,"2"), "2" , _

(, ,"3"), , _

state color if equal high priority
output state color state color if equal medium priority

state color others low priority

=
= =

When an input character arrives, register (state and color)
and cache (state and color) both start to access TRM-1 in
parallel. At the same time, TRM-0 is accessed for failure
and restartable transitions. Three possible next states and
their corresponding colors are generated and sent to Tri-
MUX component. It outputs only one state and its color to
update state and color registers respectively. The update
drives CDFA stepping forward. The caches (state and color)
are directly overwritten by the outputs of TRM-0.

V. OPTIMIZATIONS AND RESULTS

A. ITT Optimizations
In the original design, one colored state is assigned to an

entry of ITT, with 256 items. Most colored states have only
a few next states, and most items of their corresponding
entry of ITT are set to Ø. To effectively utilize ITT’s space,
two optimizations (entry combination and set-associative
strategy) are proposed in this section.

1) Entry Combination

The basic idea of entry combination is to combine some
entries into one. Two entries can be combined if and only if
all items of the same column have no conflicts. The
conflicts may occur in two cases. (1) As two corresponding
items have different non-Ø values, conflict (resource
conflict) exists. (2) As the non-Ø item overwrites the Ø one,
the next state of written entry is the state calculated by
adding the non-zero item. If that state accepts the same
character, it leads to conflict, called overwriting conflict.

0x65
s0

s1 s5

0x6c

Color 1
Color 2

0x63
…

…

0x65
…

…

…

…

0x6c
…

…

0x6f
…

…

…

…

0x61

1

s2

0x63

s8 s6

0x65

0x6f0x61

s3 s4

0x63

s7

0x63

0x6f

Color 3 … … … … ……

Color 4 … … … … ……
3

1

1

5
2

-3

Color 1
0x63

…

…

0x65
…

…

…

…

0x6c
…

…

0x6f
…

…

…

…

0x61

1
Color 2

3 1 5 2
-3

s0

s1

s8 s6

s3 s4 s7

s2

s5

ITT

ITT

0x65 0x6c

0x63 0x65

0x6f0x61

0x63

0x63

0x6f

Ø Ø Ø

Ø

Ø Ø

Ø Ø Ø Ø
Ø Ø
Ø

Ø

Ø Ø Ø Ø

(a) An example

(b) The algorithm for entry combination

Figure 11. Entry combination for ITT optimization

Given two colors Ci andCj , the kth items of their entries
are designated as []Ci k and []Cj k , and the corresponding
states are ()S Ci and ()S Cj . ()Acp S represents the character
which triggers the transition to S. The algorithm for judging
whether they can be combined is listed in figure 11(b). For
example, in figure 11(a), the initial ITT has 4 entries
corresponding to the 4 colored states of CDFA. After
combination, only 2 colors are left.

For each entry of ITT, the algorithm tries to combine it
with the previous ones. In figure 11(a), color “2” is
evaluated whether it can be combined with color “1” first. It
turns out that, the two can be combined and color “1” is
updated. Then color “3” is evaluated with color “1”.

2) Set-associative Strategy

In figure 11(a), although color “4” just uses one item, it
cannot be combined with color “2”, because color “2” has
different value of item “0x6f”. To address this issue, a
method of set associativity is presented, which is similar to
the one in cache system of micro-architecture.

For N-way set-associative, there are 256/N sets. The qth
item of pth set corresponds to (,)column p q , and the content
of color Ci is [(,)]Ci column p q . For two colors Ci andCj ,
the algorithm judging whether they can be combined with
set-associative strategy is shown in figure 12(b).

…

…

Ø
Ø

2-way set associative ITT

Set 1 Set 2 Set 3 Set 4

character
8 bits

TRM-2

color rpt color tag
1 bit

new
column

Color 1
tg

tg …

…Ø tg

tg …

…

1
Ø tg

tg

Ø tg

tg1 …

…

Ø
Ø tg

tg

Ø tg

tg5 …

… Ø tg

tg

Ø tg

tg-33 2

input char

color tag input tag
tg

1 bit 1 bit
Input tag

1 bit

CMP

Encoder

CMP

color tag input tag
1 bit 1 bit

AND
FailureMUX

data

13

(a) An example for 2-way set associative ITT

(b) The algorithm for set associativity

Figure 12. 2-way set associative strategy

Two entries can be combined by set-associative strategy
if and only if all items of the same set have no conflicts. The
conflict may occur only when all items of any set have more
than N non-Ø values. An example for 2-way set associative
strategy is shown in figure 12(a).

Similar to traditional set-associativity in memory
system, tag is attached to each item. The tag has two fields:
color tag and input tag, which represent the color and input
index before set-associative strategy respectively.

B. Analyses and Results of Memory Requirement
In CDFA, all the 1-step cross transitions, failure and

restartable transitions are eliminated, which are the major
part of total ones. Thus ACC based on CDFA is memory
efficient. In this section, we focus on analyzing memory
requirements of NSA scheme.

Suppose that the given pattern set has n patterns with m
characters. The CDFA model has s states, including c
colored states. After ITT optimization, there are c’ different
colors, with α -way set associative strategy. Because CDFA
has eliminated all 1-step cross transitions (more than 90% of
all cross ones), all cross ones can be regarded as eliminated.
Thus the number of total transition rules is approximately
equal to the number of basic transitions. As each state
except S0 corresponds to one basic transition, the total

TABLE I. COMPARISON OF MEMORY USAGE FOR SNORT SET

Architectures 2 subsets 4 8 16 mem/char*

 1785 patterns with 29.0K characters
2-way 256KB 181 168 151 6.2B
4-way 163KB 123 115 106 4.2B

ACC
with
NSA

8-way 129KB 97 87 81 3.3B
1.5K patterns with 25.2K characters B-FSM [1] N/A 188 120 92 7.4B

Bitmap
compression [15] 2.8MB 154B

Path
compression [15] 1.1MB 60B

*: Mem/char column is calculated for 4 subsets (shaded) only.

number of transition rule is s. The memory requirement of
TRM is (in bytes)

1 2 2(1 log ' / 8 log / 8)TRM TRMM M s c a−≈ ≈ × + +
The memory requirement of ITT (in bytes) is, (one more

sign bit for negative value)

2 232 ' (log 1 2 log)ITTM c s a= × × + + ×
Therefore, the memory requirement for each transition

rule is approximately
2 2 2 21 0.125 (log log ') 32 ' (log 1 2 log) /tranM a c c s a s= + × + + × × + + ×

The traditional ideal case is that each transition rule consists
of input and one state, requiring

21 logidealM s= +
Thus compared to the ideal cases, approximately if
32 's c> × , NSA scheme will be more efficient. This is very

common after two steps of optimizations for ITT.
The result of memory utilization for Snort pattern set is

listed in table 1 compared with other methods.
In table 1, our architecture uses nearly constant memory

from 4 subsets to 32 subsets. This implies that with CDFA,
pattern set partitioning is no longer the key to reduce
memory usage, compared to other architectures. For the
same subset, ACC algorithm requires less memory than
other architectures, such as B-FSM scheme with optimized
partitioning. Table 2 gives the memory usage for ClamAV
pattern set. The similar features are concluded, and at least
9.5MB memory is required for about 50K patterns totaling
4.44M characters.

When our architecture is compared with others, two facts
should be taken into account. The first one is that SDRAM
or SRAM are used in our method other than CAM or
TCAM. The other one is that our results are given in the
fewer number of subsets. This means our method is the most
straightforward way to handle larger pattern set.

To explain the overhead of more subsets, our architecture
is implemented in verilog. The verified HDL architecture is
synthesized with a 0.18µm standard cell library using
Synopsys tools. Synthesized results about chip area are
shown in figure 13. It is obvious that more subsets can result
in more chip area, and the conclusion is fit for other
architectures.

TABLE II. MEMORY USAGE FOR CLAMAV PATTERN SET

CDFA 32subsets 64 128 256 512 Mem/char*

2-way 26.8MB 19.9 16.3 13.9 12.0 6.0B
4-way 21.6MB 16.6 13.8 11.7 10.3 4.9B
8-way 18.7MB 14.8 12.4 10.8 9.5 4.2B

*: Mem/char column is calculated for 32 subsets (shaded) only.

Figure 13. Chip area of Snort with 8-way set associativity

C. Critical Path Optimization
In our architecture, two larger memories (ITT and TRM)

are accessed in one cycle respectively. To achieve high
frequency, the critical path can be pipelined to more stages.

Since next state is highly dependent on current state,
pipelining becomes very challenging for single data steam,
therefore we adopt the method of fine-grain multi-threading
[20]. The basic idea is to concurrently fetch from different
data streams on a cycle-by-cycle basis, while only one data
stream is involved at each pipelining stage. Suppose that we
have two pipeline stages in figure 14, two data streams are
involved. On even cycles, one character from data stream A
arrives and occupies the first pipeline stage. On odd cycles,
one character from data stream B arrives at the first stage
while the character from stream A occupies the second
stage.

Stream parallelism is one feature for network applications.
Therefore our method of pipelining is natural and feasible.
Using this method, our architecture can achieve very high
throughput. Table 3 shows the comparison of our design to
the others on critical path delay and throughput.

The item of “more pipelines” is the longest delay in the
design. The critical path is the ADD component that
computes next state. It can be further optimized by using
customized component.

D ata stream B

od d
cyc le
active

D ata stream A

TRM -0-1

IT Teven
cycle
ac tive state registe r B

color register B
state re gister A
colo r register A

sta te cache B
color cach e B

state cac he A
co lor cache A even

cycle
active

odd
cyc le
active

pipe line stage 2

pipe line stage 1

inpu t characte r

Figure 14. Method of fine-grain multithreading-like pipelining

TABLE III. COMPARISON OF CRITICAL PATH DELAY

Architectures
Critical

path delay
(ns)

Matching
speed

(Gbps)

Notes
(1 byte/cycle

input)

No pipeline 1.65 6.1
2 pipelines 1.18 8.5

ACC
with
NSA more

pipelines
0.85 11.7

0.18µm tech

Bit Split FSM [12] N/A 8.4~10.0 simulator
B-FSM [1] N/A 0.8~1.0 FPGA

Cho-MSmith [10] 1.12 7.14 0.18µm tech

Predec CAMs [11] N/A 2.68 FPGA
Bloom Filter [7] N/A 0.5 FPGA
Decoder NFA [4] N/A 2.0 FPGA
USC Unary [21] N/A 2.1 FPGA

Compressed DFA[22] N/A 1~10 calculated

Figure 15. Pattern set compiler

D. Pattern Set Compilier and Dyanmic Update
Our pattern set compiler has two modes, as shown in

figure 15. The first mode is building CDFA from initial
pattern set and allocating memory for our architecture. The
second mode is pattern update. Based on the algorithms of
building CDFA and coloring states, score and suggestions
are given to the pattern for update. This will help the experts
of network security to define more efficient patterns
(signatures) for our architecture.

The pattern set compiler is implemented in C language.
Only seconds are used to build CDFA for Snort and
ClamAV set on a normal server.

To achieve dynamic update without interrupting ongoing
data matching operations, a backup CDFA architecture is
used as the method of Tan and Sherwood [12].

E. Regular Expression Matching
In this work, we mainly focus on normal patterns such

as strings and simple variations of strings. The CDFA model
can also be used for multiple regular expression matching
and still performed with very efficient memory utilization.

VI. CONCLUSIONS
This paper proposes a memory efficient pattern

matching architecture for all kinds of network security
applications, with the size of pattern set ranging from 1K to
10M or even more. Our pattern matching algorithm, ACC,
is based on a novel model, namely CDFA, which can
eliminate more than 90% transitions for the applications of
network security. An NSA scheme for efficiently storing
and accessing transitions is proposed. Moreover, our pattern
matching architecture is optimized with several approaches
to achieve better performance and less memory utilization.
Experiments show that only 81KB memory (SRAM or
SDRAM) is needed for about 1.8K Snort rules (total 29K
characters) and 9.5MB for 50K ClamAV rules (total 4.44M
characters).

REFERENCES
[1] Jan van Lunteren. High-Performance Pattern-Matching for Intrusion

Detection. In 25th Conference of IEEE INFOCOM, Apr. 2006
[2] Z.K. Baker and V.K.Prasanna. Time and Area Efficient Pattern

Matching on FPGAs. In 12th Annual IEEE FCCM, April 2004
[3] Z.K. Baker and V.K.Prasanna. A Methodology for Synthesis of

Efficient Intrusion Detection Systems on FPGAs. In 12th Annual
IEEE FCCM, April 2004

[4] C.R.Clark and D.E. Schimmel. Scalable Pattern Matching for high
Speed Networks. In 12th Annual IEEE FCCM, April 2004

[5] Fang Yu, R. H. Katz and T.V. Lakshman. Gigabit Rate Packet
Pattern-Matching Using TCAM. In 12th Conference of IEEE ICNP,
Oct. 2004

[6] Long Bu, John A. Chandy. FPGA Based Network Intrusion Detection
using Content Addressable Memories. In Conference of IEEE FPT
2004, Dec. 2004

[7] Michael Attig, Sarang D., John Lockwook. Implementation Results of
Bloom Filters for String Matching. In Conference of IEEE FPT 2004,
Dec. 2004

[8] Y. H. Cho and W. H. Mangione-Smith. Deep Packet Filter with
Dedicated Logic and Read Only Memories. In 12th Annual IEEE
FCCM, April 2004.

[9] Y. H. Cho and W. H. Mangione-Smith. Fast Reconfiguring Deep
Packet Filter for 1+ Gigabit Network. In 13th Annual IEEE FCCM,
April 2005

[10] Y. H. Cho and W. H. Mangione-Smith. A Pattern Matching Co-
processor for Network Security. In 42nd Conference of DAC, June,
2005

[11] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs for Efficient
and High-speed NIDS Pattern Matching. In 12th Annual IEEE
FCCM, April 2004

[12] Lin Tan, T. Sherwood. A High Throughput String Matching
Architecture for Intrusion Detection and Prevention. In 32nd Annual
International Symposium on Computer Architecture, ISCA, 2005

[13] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang, R.
Sommer and N. Weaver. Rethinking Hardware Support for Network
Analysis and Intrusion Prevention. In USENIX Hot Security, 2006

[14] Hongbin Lu, K. Zheng, B. Liu, X. Zhang and Y. Liu. A Memory-
Efficient Parallel String Matching Architecture for High Speed
Intrusion Detection. In IEEE Journal on Selected Areas in
Communications, Vol. 24, No.10. Oct. 2006

[15] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic
Memory-Efficient String Matching Algorithms for Intrusion
Detection; In 23rd Conference of IEEE INFOCOM, Mar. 2004

[16] M. Roesh. Snort – lightweight intrusion detection for Networks. In
Proceedings of 13th Systems Administration Conference, Nov. 1999

[17] ClamAV: http://www.clamav.net/ (accessed on Oct. 2006)
[18] B. C. Brodie, R. K. Cytron and D. E. Taylor. A Scalable Architecture

for High-Throughput Regular-Expression Pattern Matching. In 33rd
International Symposium on Computer Architecture, ISCA, 2006

[19] A.V. Aho and M.J. Corasick. Efficient String Matching: An aid to
Bibliographic Search. Communications of the ACM, vol.18, 1975

[20] M. Loikkanen and N. Bagherzadeh. A fine-grain multithreading
superscalar architecture. In proceedings of the Conference Parallel
Architectures and Compilation Techniques, Oct. 1996.

[21] Z.K. Baker, V. K. Prasanna. High-throughput linked-pattern matching
for intrusion detection systems. In symposium on Architecture for
Networking and Communications Systems (ANCS), Oct. 2005

[22] Alicherry, M. Muthuprasanna, M. Kumar, V., “High Speed Pattern
Matching for Network IDS/IPS,” Proceedings of the 2006 14th IEEE
International Conference on Network Protocols (ICNP'2006), Nov.
2006, pp:187-196.

[23] Sensory Networks, “Apparatus and Method for Memory Efficient,
Programmable, Pattern Matching Finite State Machine Hardware”,
US Patent No. 7082044 B2, July 25, 2006

VII. APPENDIX
Theorem 1: The Aho-Corasick algorithm and ACC algorithm in
our work are equivalent.
Proof: Because Aho-Corasick algorithm is based on DFA, our
algorithm and AC are equivalent if and only if the DFA and CDFA
from a pattern set are equivalent. Here we define DFA as a 5-
tuple 0{ , , , , }K s F δΣ . The transition function δ can be classified

to five sub-functions: basicδ for basic transitions, failureδ for failure

ones, restartδ for restartable ones, 1 crossδ − for 1-step cross ones and

n crossδ − for n-step cross ones. CDFA is defined as a 7-tuple

0{ , , , , , ', }K s F N δ θΣ . Now we can prove that using 'δ and θ in
our algorithm, the transition function δ in DFA can be represented.

a
S0

si

sj

sh

sk
b

x
a sm

c
b

1-step

x
restartable

Figure: For proof

For basic and n-step transitions, CDFA remains the same.
For 1-step cross transition, 1 (,)cross i js b sδ − = , it is equal to

(,)basic k js b sδ = . Because the transition is 1-step cross one, in
state “sh”, when character “a” comes, the state “sk” is cached in
CDFA, that is (,)h ks a sθ = . So that in state “si”, when

'(,)is bδ returns null, the low priority policy '((,),)h js a b sδ θ =

is performed. That is, all 1-step cross transitions in DFA can be
represented using CDFA.

For restartable transition in DFA, (,)restart i hs x sδ = , it can be

replaced by 0(,) (,)i hs x s x sθ δ= = .

For failure transition in DFA, suppose 0(,)failure is k sδ = . It

can be replaced by 0(,)is k sθ = .
Now we prove that all the transitions in DFA can be

represented by transition and caching functions in CDFA. In other
words, our algorithm and AC are equivalent.

