
bitFA: A Novel Data Structure for Fast and Update-friendly
Regular Expression Matching∗

Zhe Fu
Department of Automation

Research Institute of Information
Technology

Tsinghua University, China
fu-z13@mails.tsinghua.edu.cn

Shijie Zhou
Ming Hsieh Department of Electrical

Engineering
University of Southern California

Los Angeles, USA
shijiezh@usc.edu

Jun Li
Research Institute of Information

Technology
Tsinghua National Lab for

Information Science and Technology
Tsinghua University, China

junl@tsinghua.edu.cn

ABSTRACT
This paper proposes bitFA, a novel data structure optimized for fast
and update-friendly regular expression matching. bitFA leverages
fast bit manipulation, instruction-level parallelism and bitmap com-
pression techniques to achieve 5x to 25x acceleration compared to
existing NFA or DFA based regular expression matching methods.

CCS CONCEPTS
• Networks→ Deep packet inspection; Firewalls;

KEYWORDS
Regular Expression; Finite Automaton; Bit Manipulation

1 INTRODUCTION
Due to the rich expressiveness and powerful flexibility, regular
expressions become more and more popular and play an impor-
tant role in today’s network security systems. Nondeterministic
Finite Automaton (NFA) and Deterministic Finite Automaton (DFA)
are the two most common methods to perform regular expression
matching. NFA has a compact data structure, but the nondeterminis-
tic state transitions of NFAmake it hard to guarantee the worst-case
performance. In contrast, DFA requires only one state transition
look-up per input character, so the performance is deterministic,
and DFA is becoming the preferred method for network security
systems. However, there are two main drawbacks of DFA which
limit its further applications in practice:

First, the high performance of DFA is at the cost of huge space
consumption, i.e., the well-known state explosion problem, where
the size of DFA often grows exponentially with the increase of the
size of regular expressions. Second, with the development of SDN
and NFV, the enforcement of security policies becomes more and
more dynamic. The lengthy compiling time of DFA makes it hard

∗This work was supported by the National Key Research and Development Program
of China (2016YFB1000102) and the National Key Technology R&D Program of China
(2015BAK34B00).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00
https://doi.org/10.1145/3123878.3132011

a

1 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

b

1 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

c

1 0 0 0 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

d

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

0

1

2

3

4

e

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

Figure 1: a raw example of bitFA compiled from “ab.*cd”
(without further optimization)

to meet the requirements of frequent update of regular expression
rulesets in real-world use.

In this paper, we propose bitFA to overcome these shortcom-
ings. bitFA implements fast regular expression matching as well
as fast FA compilation, and it is suitable for the scenarios with
frequently updated rules. bitFA takes advantage of fast bit ma-
nipulation, instruction-level parallelism, and bitmap compression.
Evaluations demonstrate that bitFA achieves about 12x acceleration
in average compared to NFA and DFA based methods when taking
both preprocessing and matching time into account.

2 DESIGN
The main drawback of NFA could be ascribed to the multiple active
states and uncertain memory accesses per input character. Similar
to DFA, our design, bitFA, is built based on NFA; however, bitFA is
distinctly different from DFA.

2.1 Compiling bitFA
After an NFA is built from a set of regular expressions, bitFA further
encodes this NFA intomultiple bit-vectors. For anNFAwithN states
and the alphabet Σ, a bitFA usually has N × |Σ| bit-vectors, and
every bit-vector is a N -bit vector where each bit indicates whether
the corresponding state will be active or not. More precisely, for
bitFA(i, j), which stands for the bit-vector from the ith of the N
states and jth of the alphabet, if the kth bit is 1, it means that if
state i of an NFA is active and the input character is the jth of the
alphabet, state k will be active. Figure 1 presents an intuitive view
the bitFA compiled from the regular expression “ab.*cd”. In this case,
the size of the alphabet is 5, and the NFA has 5 states, so there are
5 × 5 = 25 bit-vectors and each is a 5-bit vector. Taking bitFA(2, 2)

130

https://doi.org/10.1145/3123878.3132011

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA Z. Fu et al.

Table 1: Experimental results of three methods on different rulesets

rulesets (# of REs) snort1 (24) snort2 (34) bro (217) cisco (733) dotstar (300) range (300)

NFA time (s) preprocesing 0.108 0.124 0.266 59.207 2.957 1.367
matching 11.294 11.656 85.955 292.971 107.291 57.526

memory usage (KB) 162.520 250.882 605.470 4035.996 3165.721 3314.318

DFA time (s) preprocesing 16.449 24.527 35.934 \ \ \
matching 0.047 0.048 0.086 \ \ \

memory usage (KB) 8535.040 9988.096 6689.792 \ \ \

bitFA time (s) preprocesing 0.168 0.216 0.493 60.719 4.131 2.593
matching 1.222 1.196 3.042 1.287 2.219 1.406

memory usage (KB) 1203.646 1843.654 4413.894 30069.300 23212.102 24041.348

as an example, if state 2 is active and the input character is c , then
state 2 and 3 will be active.

The procedure of bitFA compiling only needs a complete tra-
versal of the previously-built NFA, so it is much faster and more
concise than that of DFA.

2.2 State Transition in bitFA
The state transition in bitFA could be abstracted as a multiplication
of a bit-vector and a bit-matrix. Additionally, a N -bit vector cur_bv
is used to represent the currently active states. In the beginning,
only state 0 is active, so the first bit of cur_bv is always set to 1
initially. After reading the input character j, the jth column of the
bitFA is picked out, which is a N × N bit-matrix. We use formula
(1) to iteratively compute state transitions in bitFA:

cur_bv(1×N) = cur_bv(1×N) · bitFA(:, j)(N×N) (1)
In the example in Fig. 1, suppose the active states are 0 and 2,

i.e. cur_bv = [1 0 1 0 0]. If the input character is c , the active states
after state transitions are calculated as:

[
1 0 1 0 0

]
1 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0

=

[
1 0 1 1 0

]
The result means currently the state 0, 2 and 3 are active after

reading c . To decide whether a state is accepted or not, the cur_bv
is intersected by a N -bit accepted-states vector which is set before
the matching procedure. If the intersection result is not zero, then
a match happens.

2.3 Bit Manipulation Optimization
The multiplication of a bit-vector and a bit-matrix can be simpli-
fied to a bitwise OR operation of multiple bit-vectors from the
bit-matrix, and meanwhile, the decision of accepted states is a
bitwise AND operation. Recent popular processors already have
several built-in fast instructions for bitwise operations, including
the POPCNT instruction, which is to compute the number of ones
in a word, and the LZCNT, which is to count the number of lead-
ing zero bits. These instructions have a throughput as high as one
operation per CPU cycle, which significantly relieves the inherent
problem of NFA. Besides, owing to its sparsity of data structure, the
raw bitFA compiled from an NFA can be efficiently compressed to

reduce the memory consumption. Several bitmap compression tech-
niques (such as Roaring Bitmaps [5], WAH [7], etc.) could enable
the bitwise OR and AND operation between compressed bit-vectors
without decompression. All these bit manipulation optimizations
improve the performance of bitFA and meanwhile reduces both of
the computation and memory overhead.

3 IMPLEMENTATION AND EVALUATION
Experiments are performed on a workstation with Intel Core i7-
4790 CPU (BMI1 supported). Regular Expression Processor [1] is
used as the baseline of NFA and DFA based methods. Four rulesets
picked from Snort, Bro and Cisco and two synthetic rulesets (dotstar
and range in Table 1) are tested, while a traffic PCAP file (about 6.2
MB) dumped from the campus network is treated as the input data
for different matching engines.

From Table 1 we can see that the preprocessing procedure of
bitFA is almost as fast as that of NFA, while DFA requires much
more time to build its data structure. Matching engines with less
preprocessing time are more applicable to frequently changing
ruleset. For large rulesets, the DFA states grow rapidly to more than
1 million, leading to compiling failures for DFA based methods. On
the other hand, bitFA achieves far higher matching speed than NFA.
Although DFA’s matching procedure is the best among these three
methods, the non-ignorable preprocessing time makes DFA based
methods unsuitable for the situations where regular expressions
are frequently updated or the ruleset is very large. We also measure
the space cost of these three methods and come to a conclusion
that the memory consumption of bitFA lies between that of NFA
and DFA. Other DFA based methods (such as D2FA [4], HybridFA
[2], regular expression partition and grouping [3][6], etc.) focus on
reducing the memory consumption of DFA, which requires more
preprocessing time.

4 CONCLUSIONS AND FUTUREWORK
To accelerate regular expression matching especially for frequently-
updated rules, this work proposes bitFA, a novel data structure
which makes full use of bit-level optimizations. bitFA is demon-
strated to be a promising design since it achieves 5x to 25x acceler-
ation compared to existing algorithms. Our future work includes
more efficient state encoding and bit manipulation to obtain better
matching performance of bitFA.

REFERENCES
[1] Michela Becchi. Regular Expression Processor. http://regex.wustl.edu.

131

http://regex.wustl.edu

bitFA: Fast and Update-friendly RegEx Matching SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

[2] Michela Becchi and Patrick Crowley. 2007. A hybrid finite automaton for practical
deep packet inspection. In Proceedings of the 2007 ACM CoNEXT conference. ACM,
1–12.

[3] Zhe Fu, KaiWang, Liangwei Cai, and Jun Li. 2014. Intelligent grouping algorithms
for regular expressions in deep inspection. In Proceedings of the 23rd International
Conference on Computer Communication and Networks (ICCCN). IEEE, 1–8.

[4] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan
Turner. 2006. Algorithms to accelerate multiple regular expressions matching
for deep packet inspection. In ACM SIGCOMM Computer Communication Review,
Vol. 36. ACM, 339–350.

[5] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently faster
and smaller compressed bitmaps with roaring. Software: Practice and Experience
46, 11 (2016), 1547–1569.

[6] Kai Wang, Zhe Fu, Xiaohe Hu, and Jun Li. 2014. Practical regular expression
matching free of scalability and performance barriers. Computer Communications
54 (2014), 97–119.

[7] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices
with efficient compression. ACM Transactions on Database Systems (TODS) 31, 1
(2006), 1–38.

132

	Abstract
	1 Introduction
	2 Design
	2.1 Compiling bitFA
	2.2 State Transition in bitFA
	2.3 Bit Manipulation Optimization

	3 Implementation and Evaluation
	4 Conclusions and Future Work
	References

