
TasteBuddy-based Version Selection Strategy for
BitTorrent Users against Content Pollution

Lingyun Ruan
Department of Automation

Tsinghua University
Beijing, China

Email: rlyswf@gmail.com

An’an Luo, Zhen Chen
Department of Computer Science and Technology

Tsinghua University
Beijing, China

Email: laa@mails.tsinghua.edu.cn, zhenchen@tsinghua.edu.cn

Abstract—Content pollution problem has attracted broad
attention due to its impacts on P2P networks’ efficiency and
availability. Especially for BitTorrent users, unmanageable
versions of BT torrents and chunk-based file sharing mode
make it more difficult to avoid pollution dissemination. In our
paper, we propose a smart version selection strategy based on
taste buddies to help users select high-quality versions and
keep away from polluted ones. Performance evaluation based
on real data shows that our approach effectively lowers the
probability of selecting polluted versions compared with other
strategies.

Keywords-BitTorrent; P2P; content pollution; version selec-
tion;

I. INTRODUCTION

Content pollution in P2P networks has attracted broad
attention since a mass of corrupted or inauthentic files are
spreading through P2P nowadays. A considerable number of
those files may even carry viruses or Trojan horses. When
distributed and dynamic peers enjoy the highly freedom
and convenience, the loose structure of P2P networks also
leads to weak supervision and inspection on shared contents.
Thus ill-intentioned peers are free to disseminate corrupted,
inauthentic and malicious files into their network, which
results in pollution dissemination that not only contributes
to worm and spam’s widely spreading, but also significantly
impacts on efficiency and availability of P2P networks [1].

As one of the most popular P2P file sharing systems,
BitTorrent (BT) contributes to the major P2P traffic [2]. In
BitTorrent, decoy insertion is a general content polluting
approach, where attackers purposely inject polluted ver-
sions/copies into its network [3]. Unfortunately, as far as
data integrity is concerned, BitTorrent is virtually pollution
free [4].

When a user looks for target file via BT, he usually
queries a popular torrent website (e.g. PirateBay, Mininova)
for available versions. But attackers may premeditatedly
upload files with cheating description. Effective strategy
is not available for users to avoid polluted versions, even
references or comments are given. Moreover, once users
choose polluted torrent file, chunk-based file sharing mode

makes it difficult to detect pollution during downloading
process, as we cannot distinguish corrupted chunks from
uncorrupted ones, unless we get the whole chunks.

In our paper, we proposed TasteBuddy-based Version
Selection Strategy (VSS) to help user choose high-quality
versions and avoid polluted ones before joining swarm. Taste
buddies are a group of peers who are congenial to the user’s
interests and share similarity on what they like to download
from BT. Using information provided by taste buddies, we
could reduce version selection misjudgment. Through real-
data experiment, TasteBuddy-based VSS proves to be an
effectual strategy - it considerably minimizes the probability
of selecting polluted versions.

The rest of this paper is organized as follows. Section
II presents related work and problem analysis. Section
III introduces Tastebuddy-based version selection strategy.
Section IV gives performance evaluation based on real data,
and Section V shows conclusion.

II. RELATED WORK AND PROBLEM ANALYSIS

A. Related Work

Pollution attackers inject a mass of tampered or in-
authentic contents into P2P networks in order to entice
unsuspecting users to download the files and share those
polluted copies with more users. In this manner, polluted
copies with spam or virus spread rapidly and widely through
the networks and hence attackers would easily achieve
malicious goals [5][6]. Moreover, peer dynamics of P2P
network allows attackers to cooperate with their accomplice
to launch a large-scale pollution attack by building a botnet,
which results in significant impacts on P2P traffic.

Researchers have proposed a number of P2P user models
to investigate the general pollution dynamics in P2P systems
[7][8]. However, recent experimental studies show that the
pollution level in the existing P2P network is significantly
larger than what these models predicted [5][6].

Some schemes against P2P pollution have been proposed.
In the early stage, file matching and user filtering are two
common approaches which enable user to detect pollution
content after files are downloaded [6]. However, checking

the content of so many files manually after downloading
is not really a viable option [9]. It is also impossible to
maintain a trustable and complete matching database for all
the resources in BitTorrent, because users can easily create
and upload different versions of files. Hence user filtering is
a limited-effective scheme which depends on users’ incentive
to filter out polluted files in time.

Afterwards, methods of detecting pollution before down-
loading are proposed, most of which are based on es-
tablishing trust or reputation system either for peers or
for objects. Kevin Walsh proposed Credence which ad-
dresses content pollution by providing reliable estimates
of object authenticity [10]. Scrubber imposes severe and
quick punishment to content polluters by taking individual
experience and peer testimonial into account [9]. PeerTrust
[11] built a reputation-based trust system for peer-to-peer
electronic communities. However, current reputation systems
may suffer from low robustness against collusion and are
complex to implement [4]. Meanwhile, cheating behaviors,
sibling attacks and white-washing add the difficulty to detect
polluted content and to identify malicious peers who are
responsible for injecting polluted files into the swarm [12].
Besides these, the system with moderators, who are trustable
contents providers, seems very effective in removing fake
and corrupted files. However, such mechanisms rely on a
small number of moderators acting as submitters that inject
numerous daily contents into network, which depends on
global components and is extremely difficult to distribute
[4].

Though there are a number of studies about building
decentralized trust or reputation system (i.e. Credence [10],
Scrubber [9], PeerTrust [11]) to help users discover and
select good resources, most of them are designed for Kazaa
and Gnutella, not for BitTorrent. In BitTorrent, it is difficult
for users to make an exact choice, since any single selection
strategy cannot guarantee that users pick out exactly what
they want. Moreover, chunk-based file sharing mode further
makes it difficult to detect file pollution while downloading,
which brings slow response and limits effect for current
schemes. So it is critical to build an early warning mecha-
nism in pollution detection for such peers inside the swarm.

Some works related to P2P but not directly correlative
to content pollution problem are also enlightening. J.A.
Pouwelse built reputation mechanisms based on taste bud-
dies for Personal Video Recorder [13] and P2P sharing
system (Tribler) [14] to accelerate data sharing speed and
resource discovery, but not for anti-pollution.

B. Problem Analysis

In most of today’s P2P file sharing systems, how to choose
high quality version is an open question. Each user may
have its own Version Selection Strategy (VSS). The existing
VSSs can be reduced to three categories and any single one
is limited in resisting pollution attack.

1) FileAttribute-based VSS: In most cases, users regard
versions as authentic just according to explicit file attributes,
such as file name, file size and file description. In this
manner, the probability of choosing a version is only related
to users’ subjective judgment. Without loss of generality,
after excluding unsuited files subjectively, the probability of
choosing a polluted version is directly proportional to the
number of the polluted versions remaining after exclusion,
and is inversely proportional to the total number of remain-
ing versions. Let VT denote the set of select versions related
to the topic T . Polluted VT denotes the set of polluted
versions with topic T . So the probability for user choosing
a polluted version on the topic T is:

ProbT (FA) =
|Polluted VT |

|VT |
(1)

Under this strategy, pollution attackers can easily raise the
probability ProbT (FA) by randomly injecting more decoy
or polluted versions with fraudulent description.

2) SeedNumber-based VSS: In this case, users concern
more about downloading speed - they would like to choose
the available version with the largest number of seeds, which
means more source nodes in the swarm. Some sites provide
to users seed number as reference. Dismissing extreme cases,
we assume that users randomly select a version from the set
VST whose elements have more seeds than a threshold S∗.
Let S(v) denotes the seed number of certain version v. Thus
the probability for a user to choose polluted version is:

VST
= {v|S(v) ≥ S∗, v ∈ VT }

Polluted VST
= {v|v ∈ VST

∩ Polluted VT }

ProbT (SN) =
|Polluted VST

|
|VST |

(2)

With this strategy, pollution attackers can easily raise
ProbT (SN) by injecting a large number of polluted seeds
about a single version in order to attract innocent users.

3) Reputation-based VSS: In P2P systems, many users
select version through referring to the assessments pro-
vided by other users. In reputation-based scheme, higher
reputation indicates better quality and higher authenticity.
There are both centralized reputation system (i.e. Amazon,
eBay) and decentralized reputation system (i.e. Credence)
allowing users make their own assessments to resources. For
quantitative analysis, we assume that users will randomly
select a version among the set of VRT

whose element
has higher reputation value than a threshold R∗. Let R(v)
denotes average reputation value of a certain version v. So
we have:

VRT
= {v|R(v) ≥ R∗, v ∈ VT }

Polluted VRT
= {v|v ∈ VRT

∩ Polluted VT }

Figure 1. Main idea of TasteBuddy-based Version Selection Strategy

ProbT (REP) =
|Polluted VRT

|
|VRT

|
(3)

Generally, polluted versions bear lower reputation after a
number of users’ examination. However, unfortunately, rep-
utation assessments are not effective to deal with pollution
attackers, since they can raise reputation of the polluted
versions and smear authentic versions by giving opposite
assessments, just like bad mouth attacks.

III. TASTEBUDDY-BASED VERSION SELECTION
STRATEGY

According to the aforesaid analysis, among three current
version selection strategies, any single one has limited
effects in resisting pollution attacks for BitTorrent users.
Hence it is necessary to provide a more practical and
effective VSS. An intuitive idea is to simply integrate three
current strategies to select authentic version. However, it is
still not sufficient.

As shown in Fig. 1, based on taste buddies and three
current strategies, we propose our hybrid strategy. In order
to reduce probability of bad selection, we add a role like trial
jury, which is called taste buddies, to help user make the best
choice. Taste buddies are a group of peers who are congenial
to the user’s interests about what they like to download from
BitTorrent network. Each peer in BT network maintains a
preference list, which contains a certain amount of high
quality torrent file versions that they are strongly willing to
recommend to other users. Notice that preference list is not
merely a recent download list, as a torrent file can be added
into it only after its authenticity and quality is approved
and a high evaluation is given. Each peer updates its taste
buddy list according to the preference lists’ similarity with
its buddies’ preference lists.

A. Version Selection Algorithm

Our TasteBuddy-based version selection algorithm con-
tains two steps: CandidateList Generation and Version Se-
lection.

First, candidateList is a list of strongly recommended ver-
sions generated by intersection of version top-L lists sorted

Algorithm 1 CandidateListGen(versions)

// weight vector of each strategy, set by BT users
W =< w1, w2, w3 >;
// versions sorting by torrent website
list1 = top L versions sorted by file attribute;
list2 = top L versions sorted by seed number;
list3 = top L versions sorted by reputation;
for each version in list1 or list2 or list3 do

// rank number is the same as index(0 L− 1)
// if the version is not in the listn return L
r1 = rank number of version in list1;
r2 = rank number of version in list2;
r3 = rank number of version in list3;
weight = (L−r1)∗w1+(L−r2)∗w2+(L−r3)∗w3

w1+w2+w3
;

end for
candidateList= top L version sorted by each version’s
weight;
return candidateList

by different strategies (i.e. FileAttribute , SeedNumber, and
Reputation). As BitTorrent users may have version selection
strategy of their own favor, we bring in weight vector
W =< ω1, ω2, ω3... >, ωi ∈ [0, 1] to reflect the influence
degree of each strategy. Then we obtain candidateList by
intercepting a certain number of leading elements from an
overall top-L ranking list, which is sorted by weighted
average rank with corresponding W , as shown in Algorithm
1. W offers local user flexibility for personal customization.
L denotes the length of ranking list, which must balance
between information abundance and maintenance cost, and
it is related to the total number of versions user received.

Second, as shown in Algorithm 2, hash value of each
torrent in candidateList will be sent to the peers in taste-
BuddyList to ask for recommendation. Each taste buddy
will check if a candidate version exists in its preference list
with the same hash value, and then return a version index,
after receiving which the corresponding candidate version’s
popularity will increase by one. Finally the user will select
a version with highest popularity as the target torrent. If
selectedVersion is null, the user will randomly select one
version from the candidateList.

Algorithm 3 shows how to create and update tasteBud-
dyList. Each peer maintains a preferenceList, which records
a certain amount of torrents this user prefers and recom-
mends recently. And a tasteBuddyList is created and sorted
according to the similarity degree of each buddy peers’
preferenceList. Function CalSimilarity() calculates similarity
degree of two preferenceList by comparing torrents’ hash
value. In BitTorrent, once joining in a swarm, each peer
keeps TCP connections with certain amount of other peers
called connectable peers [5] , so the maximum number of
tasteBuddyList (M) is the same as maximum TCP con-

Algorithm 2 V ersionSelection(versions, tasteBuddyList)

candidateList = CandidateListGen(versions);
for each peer in tasteBUddyList do

if peer is connectable then
send to peer each candidate torrent’s hash value;
index = torrent index from peer’s feedback;
if index ≥ 0 then
candidateList[index].popularity ++;

end if
end if

end for
selectV ersion = version with the highest popularity in
the candidateList;
if selectedV ersion == null then

selectedV ersion = randomly select form
candidateList;

end if
return selectedV ersion

Algorithm 3 BuddyListUpdate(connectablePeers,
preferenceList)

for each peer in tasteBuddyList do
if peer is not connectable for a period of time then

delete peer from tasteBuddyList;
end if
if peer made a wrong recommendation then

delete peer from tasteBuddyList;
end if

end for
randomly select M peers from connectablePeers;
for each peer do

if peer is not in tasteBuddyList then
send hash value of each torrent in preferenceList
to peer;
tempList = torrent hash value from peer’s
preferenceList;
peer.similarity =
CalSimilarity(preferenceList, tempList);
if tasteBuddyList.length ≥ M then
lastPeer = tasteBuddyList’s last peer;
if peer.similarity ≥ lastPeer.similarity then

delete lastPeer from tasteBuddyList;
insert peer into tasteBuddyList by ranking of
similarity;

else
insert peer into tasteBUddyList by ranking of
similarity;

end if
end if

end if
end for
return tasteBuddyList

nections (typically 40 peers). The tasteBuddyList will be
updated by periodically exchanging preferenceList between
peers, sorting tasteBuddyList with refreshed similarity de-
gree and displacing old buddy with new one, the time
period is set as peer connection timeout in BT (typically
300 sec). Buddy peers will also be removed if they give
wrong recommendation or have been not connectable for a
long period of time.

B. Algorithm Discussion

According to Eq. 1- 3, for our hybrid strategy,
the probability of choosing polluted version is
ProbT (FA, SN,REP). Assume

ProbT (FA) = p1, P robT (SN) = p2, P robT (REP) = p3

It is obvious that

ProbT (FA, SN,REP) ≤ min{p1, p2, p3}

Especially, when ProbT (FA), ProbT (SN), ProbT (REP)
are irrelative, we will have

ProbT (FA, SN,REP) = p1 ∗ p2 ∗ p3
The equation above means the pollution-selection probabil-
ity of hybrid strategy is surely much lower than adopting
any single one of the three strategies. However, a smart
attacker could control a botnet and create a torrent with
high swarm population and high reputation, which looks
rather attractive, especially on some hot topics. Therefore,
we bring in taste buddies to give valuable recommendations,
which can further protect user from making wrong choices
and joining polluted swarm.

Someone may argue about the effectiveness of taste
buddies, because we can’t guarantee the existence of the
same torrents in taste buddies’ preferenceList since the
sources’ topics are so diverse. According to Algorithm 3,
we define max length of preferenceList as P , and Pi is the
number of same torrents appearing in preferenceList of both
local peer and ith taste buddy. The similar degree, which
reflects the similarity of users’ recent hobbies and interests,
is hence defined as Pi/P . So the probability of a user’s target
torrent also appearing in any taste buddy’s preferenceList is:
1 −

∑M
i=1(1 − Pi/P). Though Pi/P might be very small,

since M is much larger, it is very likely to find someone
who has downloaded the version you are interested in and
give you their suggestion.

Another question is on the correctness of recommen-
dations from taste buddies concerning there are malicious
peers in tasteBuddyList. For BitTorrent, as connectable peers
are randomly selected by trackers or DHT, it is hard for
attackers to be peer of a certain target. Even so, actually
pollution attacker is selected to be a taste buddy only under
condition of its high similarity degree with good peers
(Pi/P), which means attackers have to share at least part
of a victim’s interests. It limits the opportunity of malicious

peers providing misleading recommendations. And once a
taste buddy is detected in making a wrong recommendation,
no matter it is malicious peers or good peers, it will be
deleted from tasteBuddyList.

The time complexity of our VSS algorithm is very low,
because the major cost of list sorting, which evaluates a
version through file attribute, seed number and reputation
into consideration, can be done on BT server side uni-
formly and then returned to peers. The communication
complexity of Algorithm 1&2 is O(LM), in which L
and M is the length of candidateList and tasteBuddyList
respectively, while Algorithm 3 is O(MP), among which
P denotes preferenceList’s length. Since L and M are
both small, the traffic overhead of peer communication is
pretty low. For TasteBuddyUpdate algorithm, the size of
connectablePeers and preferenceList are fixed number
(M and P), which means each peer will send M × P ×
sizeof(hash value of torrent) traffic every hundreds of sec-
onds.

IV. PERFORMANCE EVALUATION

In order to verify the performance of our hybrid
TasteBuddy-based VSS, we collect real data from famous
BT websites to make a contrast between our algorithm
and other strategies. We search hot topics (Movie, Music,
and Software) on each websites and collect all torrents’
information as a dataset for strategy verification. All the
fake, inauthentic, irrelevant, incongruous torrents are pre-
identified and counted based on torrent information. And we
define Pollution Rate as the proportion of polluted torrents
in the whole torrents collected, which equals the probability
of a polluted version in a completely random select.

Torrent dataset with various keywords are presented
in Table I is collected from three hot BT websites
(www.mininova.org, www.torrentreactor.net, and torrent-
finder.com). Take the movie Transformers 2, 2009 for exam-
ple; we acquired 385 different torrents, among which 263
versions are polluted. The reason of such a high pollution
rate is that Transformers 2 is newly released. Then we
apply five different version selection strategies (completely
randomly select, file-attribute strategy, seed-number strat-
egy, reputation strategy and TasteBuddy-based strategy) to
avoid polluted versions. We compare their effectiveness by
calculating the probability of selecting polluted versions
is calculated for each VSS. To simulate our TasteBuddy-
based strategy on the dataset, we assume torrent files are
equally distributed among the peers, each peer keeps 10-
torrent preference list and 40 taste buddies, and that weight
vector W is [1/3, 1/3, 1/3] which means equal weight of
three existing strategies.

Finally, by analyzing simulation result of five VSSs based
on our dataset, as shown in Fig. 2, several conclusions can
be obtained.

Figure 2. Comparison on probability of selecting polluted versions under
various strategies.

First, pollution attackers prefer to attack videos, especially
hot movies, rather than music and software. Pollution rate of
the newly released movie is much higher, as its vast demand
offers a great opportunity for pollution dissemination.

Second, FileAttribute-based strategy seems not effectual
in reducing probability of selecting polluted versions, some-
times even worst than random selection, because pollution
attackers are good at forging torrents and making them
look so attractive. And SeedNumber-based strategy is also
not good, especially for hot resources. Polluted versions of
the latest movies can gather a great number of users in
a very short time, which increases its selected probability
even under the SeedNumber-based strategy. Reputation-
based strategy works better than other two strategies, since
the more peers join in, the more correct evaluation is given
to user. However, this kind of central reputation system is
maintained by web servers, which is not scalable and robust.
The simulation results of the three common used strategies
can also be used as reference when setting weight vector
W .

Third, compared with other strategies, our hybrid
TasteBuddy-based VSS is the most effective way to avoid
polluted torrents. In some cases, the pollution selection
probability can be limited to 0. Furthermore, it is found
that SeedNumber-based VSS and TasteBuddy-based VSS
are closely-related, which is reasonable in that pollution
proportion of seeds has influence on the effectiveness of
taste buddy group to a certain extent.

V. CONCLUSION

Pollution dissemination seriously impacts the availability
of P2P applications. Most of previous work focused on
building a centralized database for reputation system. But
these approaches are limited to detect pollution in time and
to restrict pollution level effectively in BT network, because
BT’s user-decided version selection mode and chunk-based

Table I
TORRENT SEARCH RESULTS OF CERTAIN KEYWORDS

Keywords Category Total Torrents Polluted Torrents Pollution Rate
Titanic, 1997 (Ti) Movie 219 29 13.24%

The Lord of the Ring 1, 2001 (LR1) Movie 158 19 12.03%
The Load of the Ring 3, 2003 (LR3) Movie 144 23 15.97%

Transformers, 2007 (TF) Movie 216 62 28.70%
Batman: The Dark Knight, 2008 (Bm) Movie 203 56 27.59%

Transformers 2, 2009 (TF2) Movie 385 263 68.31%
Dangerous, Michael Jackson (MJ) Music 62 9 14.52%

Minutes To Midnight, Linkin Park (LP) Music 178 18 10.11%
Ubuntu Linux 9.04 desktop (Ub) Software 62 4 6.45%

Eclipse SDK 3.3 (Ec) Software 44 3 6.82%

file sharing mode inhibits powerful official inspection and
instant feedback from users.

In our paper, we proposed a smart version selection strat-
egy based on taste buddies to help users choose high-quality
versions and avoid polluted ones. Performance evaluation
based on real data shows that our approach effectively
decreases the probability of selecting polluted versions com-
pared with other strategies.

Our future work is to design an effective scheme under
which pollution warnings can be spread rapidly to all the
peers in a swarm-to-swarm manner. We will also collect
more trace data of pollution swarms to build a more precise
model for BitTorrent contents pollution.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (NSFC) No. 90718040 and
No.60773138, the National Grand Fundamental Research
Program of China (973) under Grant No. 2006CB303000
and 2010CB328105, the National High-Tech Research
and Development Plan of China (863) under Grant No.
2007AA01Z468 and No.2008AA01Z212.

REFERENCES

[1] G. Suryanarayana, J. R. Erenkrantz, and R. N. Taylor, “An
architectural approach for decentralized trust management,”
IEEE Internet Computing, vol. 9, pp. 16–23, 2005.

[2] T. Mennecke, “Bittorrent remains powerhouse network,” Slyck
News, January 31 2005.

[3] K. Walsh and E. G. Sirer, “Fighting peer-to-peer spam and
decoys with object reputation,” in Proceedings of the 2005
ACM SIGCOMM workshop on Economics of peer-to-peer
systems, ser. P2PECON ’05. New York, NY, USA: ACM,
2005, pp. 138–143.

[4] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bit-
torrent p2p file-sharing system: Measurements and analysis,”
in Peer-to-Peer Systems IV, ser. Lecture Notes in Computer
Science, M. Castro and R. van Renesse, Eds. Springer Berlin
/ Heidelberg, 2005, vol. 3640, pp. 205–216.

[5] U. Lee, M. Choi, J. Cho, M. Y. Sanadidi, and M. Gerla,
“Understanding pollution dynamics in p2p file sharing,” in In
Proceedings of the 5th International Workshop on Peer-toPeer
Systems (IPTPS’06), 2006.

[6] J. Liang, R. Kumar, Y. Xi, and K. Ross, “Pollution in
p2p file sharing systems,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 2, 2005, pp. 1174 – 1185
vol. 2.

[7] N. Christin, A. S. Weigend, and J. Chuang, “Content avail-
ability, pollution and poisoning in file sharing peer-to-peer
networks,” in Proceedings of the 6th ACM conference on
Electronic commerce, ser. EC ’05. New York, NY, USA:
ACM, 2005, pp. 68–77.

[8] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel, “Denial-of-service resilience in peer-to-peer
file sharing systems,” in Proceedings of the 2005 ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’05. New
York, NY, USA: ACM, 2005, pp. 38–49.

[9] C. Costa, V. Soares, J. Almeida, and V. Almeida, “Fighting
pollution dissemination in peer-to-peer networks,” in Proceed-
ings of the 2007 ACM symposium on Applied computing, ser.
SAC ’07. New York, NY, USA: ACM, 2007, pp. 1586–1590.

[10] K. Walsh and E. G. Sirer, “Fighting peer-to-peer spam and
decoys with object reputation,” in Proceedings of the 2005
ACM SIGCOMM workshop on Economics of peer-to-peer
systems, ser. P2PECON ’05. New York, NY, USA: ACM,
2005, pp. 138–143.

[11] L. Xiong and L. Liu, “Peertrust: supporting reputation-based
trust for peer-to-peer electronic communities,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 16, no. 7,
pp. 843 – 857, 2004.

[12] H. Chen and G. Chen, “A resource-based reputation rating
mechanism for peer-to-peer networks,” in Grid and Coop-
erative Computing, 2007. GCC 2007. Sixth International
Conference on, 2007, pp. 535 –541.

[13] J. Pouwelse, M. V. Slobbe, J. Wang, M. J. T. Reinders, and
H. Sips, “P2p-based pvr recommendation using friends, taste
buddies and superpeers,” in in Beyond 2005: A Workshop on
the Next Stage of Recommender Systems Research, 2005.

[14] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Iosup, D. H. J. Epema, M. Reinders, M. R. V. Steen, and
H. J. Sips, “Tribler: A social-based peer-to-peer system,” in
In The 5th International Workshop on Peer-to-Peer Systems
(IPTPS06), 2006.

