
ISSN 1007-0214 01/10 pp 635–644
DOI: 10.26599 / TST.2018.9010062
Volume 23, Number 6, December 2018

MN-SLA: A Modular Networking SLA Framework for Cloud
Management System

Zhi Liu, Shijie Sun, Ju Xing, Zhe Fu, Xiaohe Hu, Jianwen Pi, Xiaofeng Yang, Yunsong Lu, and Jun Li∗

Abstract: With the proliferation of cloud services and development of fine-grained virtualization techniques, the

Cloud Management System (CMS) is required to manage multiple resources efficiently for the large-scale, high-

density computing units. Specifically, providing guaranteed networking Service Level Agreement (SLA) has become

a challenge. This paper proposes MN-SLA (Modular Networking SLA), a framework to provide networking SLA and

to enable its seamless integration with existing CMSes. Targeting at a modular, general, robust, and efficient

design, MN-SLA abstracts general interacting Application Programming Interfaces (APIs) between CMS and SLA

subsystem, and it is able to accomplish the integration with minor modifications to CMS. The evaluations based

on large scale simulation show that the proposed networking SLA scheduling is promising in terms of resource

utilization, being able to accommodate at least 1.4× the number of instances of its competitors.

Key words: networking; service level agreement; cloud management system

1 Introduction

As the foundation of the multi-tenancy cloud, Cloud
Management System (CMS) takes the responsibility
of managing the resources of cloud infrastructure and
provisioning the computing instances for tenants. Server
virtualization technologies have enabled the fine-grained

• Zhi Liu, Shijie Sun, Ju Xing, Zhe Fu, and Xiaohe Hu
are with Department of Automation, Research Institute
of Information Technology, Tsinghua University, Beijing
100084, China. E-mail: zhi-liu12@mails.tsinghua.edu.cn;
ssj13@mails.tsinghua.edu.cn; xingj15@mails.tsinghua.
edu.cn; fu-z13@mails.tsinghua.edu.cn; hu-xh14
@mails.tsinghua.edu.cn.

• Jun Li is with Research Institute of Information Technology,
Tsinghua National Lab for Information Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: junl@tsinghua.edu.cn.

• Jianwen Pi, Xiaofeng Yang, and Yunsong Lu are
with Huawei Inc., Santa Clara, CA 95050, USA. E-
mail: Jianwen.Pi@huawei.com; Karl.Yang@huawei.com;
Yunsong.Lu@huawei.com.

∗ To whom correspondence should be addressed.
Manuscript received: 2017-01-08; accepted: 2017-02-22

slicing and allocation of resources like CPU, memory,
and disk[1], while networking resource allocation has
always been a challenge in multi-tenancy cloud. On one
hand, logically neighboring instances of the same tenant
could be scattered across multiple servers, but should
be interconnected as if they were in the same Local
Area Network (LAN)[2]. Besides, physically neighboring
instances of multiple tenants should be strictly isolated to
guarantee security, even though they are located within the
same server. Efforts in both academia and industry have
been addressing the networking problem by leveraging
Software Defined Networking (SDN) technique and its
most popular application—network virtualization[3].

Taking an in-depth analysis from the perspective
of resources, it could be observed that resources like
CPU, memory, disk, and even cache[4] could possibly
be provisioned with Service Level Agreement (SLA),
claiming the reservation of certain resource quantity and
quality. However, current CMSes have not been able to
address the SLA for network resource, leaving multiple
tenants to share the physical bandwidth in an unrestrained
manner. One might imply that network may not be as busy
as CPU or memory, and will be less noticeable during



636 Tsinghua Science and Technology, December 2018, 23(6): 635–644

the peak time. However, a recent shift from traditional
Virtual Machine (VM) based service to container based
“microservice” significantly aggravated the networking
problem. Containers are lightweight and could be
provisioned 1–2 orders more than the number of virtual
machine on single machine[5], making the networking
resource even more constrained.

This paper addresses the problem by proposing MN-
SLA, a Modular Networking SLA framework for the
CMS. MN-SLA abstracts general interacting Application
Programming Interfaces (APIs) between CMS and SLA
subsystem, and it is able to accomplish the integration
with minor modifications to CMS. Also, the framework
is able to provide networking SLA under different SLA
enforcement modes. Preliminary evaluation results show
that the proposed SLA scheduling algorithm is promising
in terms of network resource utilization and is able to
accommodate at least 1.4× the number of instances of
its competitors. The rest of this paper is organized as
follows: Section 2 gives the background of networking
SLA in multi-tenancy cloud and summarizes the design
challenges of SLA subsystem; Section 3 introduces the
architecture and design of MN-SLA, and elaborates how
this framework addresses the design challenges. The
proposed SLA scheduling algorithms are illustrated in
Section 4, followed by implementation and evaluation in
Section 5. In Section 6, we conclude this paper as well as
discuss about the future work.

2 Background

Currently, most services of cloud are based on VMs. As
container technology moves into maturity and application
deployment in containers has become automated[6, 7],
container-based cloud services become promising and are
already adopted by many top cloud providers[8, 9] in their
services. There are also scenarios which require both VM
and container deployment[10]. Therefore, in this paper,

we discuss the SLA solution for general computing units,
and use the term “instance” to represent both VM and
container.

Networking SLA in this paper is taken mostly as
network bandwidth SLA, this is due to the fact that
other network measurements like latency is more non-
deterministic, and is affected by many factors such as
queuing in software and hardware switches[11], application
response, and server IO, etc. From the perspective of
users, the SLA intentions are specified based on a “service”
model as shown in Fig. 1. Instances are categorized by
services based on their functionality, and services could be
interconnected with internet or other services by logical
“linking”. Networking SLA parameters could be specified
on the above linkings. For example, a cloud tenant
might specify certain amount of bandwidth to be reserved
between his web service and database service. However,
inter-service SLA is not straight-forward to implement
since the number of instances in each service could change
as the service scales horizontally. Therefore, this paper
considers two schemes of SLA specifications, and either of
them maps the inter-service SLA into inter-instance SLA
differently.

The first one is “fixed inter-instance bandwidth”. The
bandwidth on the linking represents that such amount
of bandwidth should be reserved between any pair of
instances of interconnected services. The second scheme
is “fixed aggregated inter-service bandwidth”. In this
case, the numbers on linkings represent the aggregated
bandwidth between the services, and the inter-instance
bandwidth is derived by dividing the aggregate bandwidth
equally among all of the instance pairs. With such fine-
grained inter-instance SLA, the dataplane policy entries
could be generated and enforced to the appropriate
switches.

The SLA framework should be able to manage network
resources efficiently, and should also integrate with

Fig. 1 SLA user definition model.



Zhi Liu et al.: MN-SLA: A Modular Networking SLA Framework for Cloud Management System 637

existing CMSes seamlessly. Currently, there have been
varieties of CMS in production and it would be too
disruptive to re-factor them in order to add the networking
SLA functionality. In addition, CMS is the final decision
point of instance deployment and maintains information
essential to SLA enforcement. Therefore, there should
be mechanisms for such information to be exchanged
and synchronized between CMS and SLA subsystem.
Given that different CMSes might consume the SLA
functionalities at different stages during the instance
provisioning, the design should be adaptive to these
uncertainties.

To summarize, the design of the SLA subsystem should
meet the following requirements.

• Modularity. The SLA subsystem should be a
separate module and loosely coupled with CMS, and
the integration should require minor modifications to the
CMS.

• Generality. Different cloud management systems
should call standard APIs to interact with SLA subsystem.
These abstracted APIs should be able to deliver a wide
range of SLA functionalities.

• Robustness. The SLA subsystem should be adaptive
to different SLA enforcement modes, and should be able to
handle the uncertainties of CMS to deliver the same SLA
functionality.

• Efficiency. The SLA subsystem should carefully
schedule the instance placement based on network
resource, so that the CMS is able to accommodate more
tenant instances.

3 MN-SLA Design

To meet the above design requirements, MN-SLA makes
several design choices.

Separation of basic networking and SLA. Given
that basic networking functionalities have already been
incorporated by most existing CMSes, MN-SLA leaves
basic networking unchanged in existing CMSes and only
handles networking SLA functionalities. However, this
also brings about the problem that the SLA subsystem
is unaware of the locations, affiliations, and networking
configurations of each instance, without which the SLA
policies cannot be derived. Therefore, several APIs are
designed for CMS and SLA subsystem to synchronize such
information. One might think that this requires plenty of
changes in CMS, but what is found indicates that many
CMS implementations[7, 12] rely on some reliable datastore
to keep their configurations for robustness. Such datastore

is a perfect synchronization point, where SLA subsystem
could be registered as a listener of any changes of instance
configurations.

Offer-based scheduling. Generally, the CMS
manages resources like CPU and memory to figure
out the location for instance deployment. When
integrating networking SLA subsystem with CMS, one
important problem is how to incorporate network-oriented
scheduling with the CMS placement. MN-SLA addresses
this problem based on “offer-based scheduling”. On
each physical machine within the management domain, a
CMS agent will report to the CMS its available resource
in form of “offer”. The CMS then sorts these offers
according to the provisioning purposes, e.g., minimizing
the overall maximum workload. To integrate with the
SLA subsystem, the SLA plugin extracts these offers
and consults the SLA subsystem for placement solutions
considering network resource. The networking-oriented
solution will be incorporated with results based on other
resources (e.g., CPU and memory, etc.) to determine the
final deployment location.

3.1 Architecture and components

The overall architecture of our MN-SLA design and
components are shown in Fig. 2.

• SLA plugin. The SLA plugin integrates the
networking SLA functionalities with the CMS. It parses
specifications from tenants and extracts the networking
SLA intentions. In addition, it intercepts the offers of the
CMS and consults the SLA subsystem for evaluation based
on networking resource.

• API handler. The API handler receives
Representational State Transfer (REST) requests from
CMS, and extracts the type and payload of each request.
The handler then calls the related modules in SLA
subsystem to execute the request, and finally replies with
the result returned.

• Deployment config manager. The deployment
config manager is designed to get instance configurations
from CMS, so that the SLA subsystem could be provided
with the information like locations, affiliations, and
networking configurations.

• SLA scheduler. The SLA scheduler is responsible
for implementing the SLA sorting and adjustment
algorithms, providing the evaluating or relocating results
based on current network conditions.

• SLA policy manager. SLA policy manager handles
the policy enforcement requests. It generates dataplane
SLA policy entries and delegates the policy renderer to



638 Tsinghua Science and Technology, December 2018, 23(6): 635–644

Fig. 2 Overall architecture of SLA subsystem.

push the policies to dataplane. Meanwhile, it maintains
both the logical and dataplane policy entries in a database
to simplify further policy modifications.

• Network resource manager. Network resource
manager collects topology and link capacities from the
underlying infrastructure. It also constructs a “network
resource graph”, which will be consumed by other
modules for purposes such as calculating the capacity
between instances or determining the policy enforcement
point.

• Policy renderer. The policy renderer implements
the actual dataplane policies to the OpenFlow-enabled
switches. Since the implementing of SLA policy requires
multiple southbound protocols, it hides the underlying
complexity and provides a clean interface for SLA policy
enforcement.

3.2 Execution modes and APIs

The SLA subsystem is designed to support user’s SLA
specification under different SLA enforcement modes.
One important factor is the sequential order of SLA
definition, i.e., user might define SLA policies either
before or after the target instance is deployed, which has
great impact of how networking SLA should be enforced.
In the first case, the location of the target instance is
carefully picked to avoid over-congestion. While in

the latter case, the instance has been deployed before
networking SLA is specified and the SLA enforcement
might fail. Therefore, the SLA subsystem is designed
to support two modes to accommodate SLA intentions—
proactive mode and passive mode. To support the
implementation of the above two modes, a group of
standard APIs are designed, as listed in Table 1.

3.2.1 Proactive mode
In proactive mode, a user defines the services with the
intermediate networking SLA specification. When the
user submits a request to deploy an instance, the SLA
plugin extracts the offers and SLA specifications from
the CMS, and issues an SLASortingRequest() to the
SLA subsystem. On receiving the request, the service
affiliation and its SLA peers could be derived. The SLA
subsystem returns with offers sorted according to their
satisfaction of the SLA specifications. The CMS then
picks the final location to deploy this instance, and passes
the deployment information via InstanceDeployInfo()
to the SLA subsystem. Finally, the CMS calls the
SLAPolicyEnforcement() to delegate the SLA subsystem
for enforcing the corresponding SLA policies.

3.2.2 Passive mode
In passive mode, the CMS first deploys the target instances
without calling SLASortingRequest() beforehand. It then

Table 1 SLA APIs.
API Description

SLASortingRequest (SLAIntention, offers) Consult SLA subsystem for ordered offer according to networking SLA

InstanceDeployInfo (InstanceInfo) CMS passes instance deployment information to SLA subsystem

SLAPolicyEnforcement (InstanceSLASpec) CMS delegates the SLA subsystem to enforce the dataplane policies

SLAAdjustmentRequest (SLAIntention, offers) CMS delegates the SLA subsystem to release network resource for current SLA intention



Zhi Liu et al.: MN-SLA: A Modular Networking SLA Framework for Cloud Management System 639

issues an SLAPolicyEnforcement() to push the SLA
polices. Since the capacity of links can be inadequate due
to non-optimized placement, the enforcement request will
return with a failure. In this case, the CMS will issue an
SLAAdjustmentRequest() to ask for instance relocation, in
order to release enough bandwidth. The SLA subsystem
then returns with adjustment (i.e., instance relocation)
solutions and the CMS picks one. The CMS then migrates
the instances and informs the SLA subsystem by calling
InstanceDeployInfo(). The SLA subsystem will update
the corresponding SLA dataplane policy entries based on
the new instance locations. Finally, the CMS will issue
another SLAPolicyEnforcement() after the adjustment.

4 SLA Scheduling Algorithms

The SLA scheduling algorithm is responsible for providing
solutions of instance placement to CMS based on current
network capacity. The scheduling of networking resource
is different from other resources like CPU and memory,
which only need to consider the local resource fulfillment.
The evaluation of each offer requires checking the paths
between all inter-connecting peers, and the capacity of
each path relies on all its belonging links. Therefore, the
scheduling algorithm requires complex calculation based
on the topology, network resource, and instance locations.

There are a couple of works that focussed on network
resource scheduling. Each of them addresses the problem
from different perspectives. Faircloud[13] and NeTShare[14]

proposed several different models to divide the network
resource when bandwidth is insufficient. However, these
solutions focus on the fairness among multiple flows or
tenants when the network is over-congested, and do not
provide guaranteed networking SLA for tenants.

Oktopus[15] proposed the abstraction of “virtual
cluster” to describe the network resource requirements. It
proposed a greedy algorithm that finds the lowest topology
hierarchy to accommodate the whole virtual cluster and
reserve network resource for its inter-connected instances.
However, the placement is done in granularity of cluster,
which indicates that the tenants should be aware of their
whole network structure and requirements beforehand.
Such assumptions do not hold since cloud tenants mostly
add instances incrementally as their services scale up. On
the other hand, Ref. [16] schedules the network resource in
granularity of Jobs/Tasks, and considers the time varying
characteristic of network utilization. It tries to interleave
high-demand workloads with low-demand ones, and thus
achieves high link utilization. Such proposal works for

workloads like batch computing tasks, but not for tenants
that occupy the instances and network bandwidth for a long
time. In addition, it requires the networking utilization
profile of various tasks, which is hard to acquire and
may change quickly in production systems. Therefore, it
could be observed that existing solutions do not support
guaranteed networking SLA in an incremental manner, and
new scheduling abstractions and algorithms are required to
address the problem.

On the other hand, the scheduling algorithm should
prevent complex calculation, in order to return the result
within a predictable amount of time. To accelerate
the computation, the algorithm is designed to rely on
some pre-calculated structures, i.e., the Network Resource
Matrix (nr matrix), the Distance Matrix (d matrix), and
the Network Resource Graph (nr graph). These structures
store the information for each “Deployment Entity(DE)”,
which is the lowest level entity that could instantiate an
instance. In the following discussions, the term “DE”
refers to a host in our physical setup. (A DE can also be a
VM in some scenarios, where containers are considered to
be deployed on such DEs.)

• Network resource matrix stores the available
network resource between any DEs, it is an N×N matrix
where N is the number of DEs in the system. For each
DE pair, the corresponding value is the available network
resource (bandwidth capacity) along their interconnecting
path. Though generating paths for all DE pairs is time-
consuming, the paths could be generated only when
the topology changes. The bandwidth capacity is
incrementally updated after each bandwidth allocation,
enabling fast calculation of the evaluating results.

• Distance matrix stores the distances between any
DEs, and also has a size of N×N . The distance is counted
in terms of number of hops between the DEs. The longer
the distance is, the more links it occupies. When the SLA
sorting algorithm evaluates the offers according to locality,
it consults this distance matrix for each inter-connected
pair. Also, such distance information is essential for
further enforcing networking latency SLA, which will be
included in our future work.

• Network resource graph is constructed by the
network resource manager. The graph is consulted to
generate the path and the available capacity between any
DE pair. The construction and update of distance matrix
and network resource matrix also rely on this graph.

In addition, cloud data center networks are always
constructed with hierarchy[17], where high-layer links carry
a larger amount of aggregated traffic and are prune to



640 Tsinghua Science and Technology, December 2018, 23(6): 635–644

congestion[18]. Thus localization is an important concern
to relieve the pressure of high-layer links, as well as to
reduce the communication latency. Therefore, distance
and overall link utilization are two important metrics for
our heuristic. The goal of our SLA scheduling algorithm
is to introduce least load increase to links, and to place the
communicating instances as close as possible.

4.1 SLA sorting algorithm

Given the offers to be evaluated and user’s SLA intention,
the offers are sorted according to the network capacity.
Since CMS might deliver a large number of offers to be
evaluated at a time, which might result in unpredictable
response time, the sorting algorithm is designed to
return at most C offers. The algorithm firstly sorts the
offers based on the distance between the interconnecting
instances, then filters out the offers that cannot meet the
SLA specifications, and finally evaluates each offer and
returns at most C feasible offers according to its min-
max optimization goal, then reserves the network resource
based on the SLA specification.

As shown in the pseudo code, the evaluating algorithm
(Algorithm 1) is conducted in the following steps.

‘

4.1.1 Offer sorting
For each candidate offer, the algorithm calculates the total
distance between the interconnected pairs involved in this
SLA intention. The calculation directly refers to the
values in the distance matrix and the complexity will be
O (N × P ), where N is the number of offers and P is
the number of peering instances. Later, the algorithm sorts
the offers according to this distance, resulting in the offer
with least total distance to appear first after sorting. The
intuition is that the offers with better locality will be further
evaluated first, and the complexity of the sorting will be
O (N× logN).

4.1.2 Offer filtering
Since SLA policies are specified in a high-level manner
(e.g., service-to-service), each offer requires evaluating
the network resources between multiple peering DEs.
The algorithm consults the deployment config manager
to determine which instances are related to the policy
and convert the original inter-instance demands to
corresponding inter-DE demands. The network resource
matrix will be consulted to filter out the offers without
enough network resource. Since each peering DE could be
filtered with O(1) complexity, the fulfillment of each offer
could be derived within O(P ). If none of the DE meets the
SLA intention, the algorithm will return with an empty list
indicating the network capacity is insufficient.

4.1.3 Offer evaluating
To save the time for evaluating, the algorithm evaluates
at most the first C feasible offers. For each offer, the
algorithm places the instance and adds the load to the
involved paths. Then the algorithm calculates the cost
of this offer according to the remaining capacity of the
related links. The cost is generated by summing up the
max link utilization ratio of each involved path. Finally
the returned offers are sorted by cost in the ascending
order.

4.2 SLA adjustment algorithm

The SLA adjustment algorithm (Algorithm 2) is
called when processing an SLAAdjustmentRequest,
following the failure of previous SLASortingRequest or
SLAPolicyEnforcement. Given the desired SLA intention,
the goal of SLAAdjustmentAlgorithm is to generate
several instance relocating solutions so that the SLA
intention could be accommodated. The SLA intention
is included in the SLAAdjustmentRequest, which should
be the same as previous failed SLASortingRequest. The
SLA adjustment algorithm runs in the following steps.



Zhi Liu et al.: MN-SLA: A Modular Networking SLA Framework for Cloud Management System 641

4.2.1 Offer sorting
For each offer, the algorithm assumes that the target
instance could be accommodated on that location and
calculates the bandwidth capability of all links after
deploying the instance with networking SLA. With these

link utilizations related to this offer, the algorithm
calculates the total amount of exceeding link capacity,
indicating the amount of network resource to be released
for this offer. After completing the calculation of each
offer, the algorithm sorts the offers in the ascending order.
Therefore, the offer that requires the least resource to
release will be considered first in following steps.

4.2.2 Instance relocating
The algorithm then iterates the sorted offers, trying to
generate a relocating solution for each of them. Each
relocating solution may migrate multiple instances. To
generate the relocation solution for certain offer, the
algorithm first checks the capacity of all links after
enforcing the SLA for this offer. The over-congested links
will be derived and the algorithm then tries to relocate
some instances occupying the link to release enough
bandwidth. To be more specific, the algorithm iterates
the over-utilized links, and derives all the instance pairs
that traverse those links. For each over-congested link,
the corresponding instance pairs are sorted in descending
order according to their contribution to the link congestion.
Then the algorithm will try to move the instance pairs in
order to mitigate existing over-congested links and not to
introduce additional over-congestions.

If the replacement successfully releases enough
capacity for all the over-utilized links, then a relocation
solution is generated for the offer. Otherwise the algorithm
continues with the next offer. To limit the calculation
complexity, the number of offers that the algorithm
iterates could be configured, which constrains the response
time.

5 Implementation and Evaluation

MN-SLA prototype is implemented on OpenDaylight[19]

controller, behaving as a controller application plugin.
Link Layer Discovery Protocol (LLDP)[20] is used for
topology discovery, where the SDN controller instructs an
openflow-enabled switch to send an LLDP packet from a
certain interface, and discovers the outgoing interface of
the same packet to identify a link between switches. A
consistent datastore is used to synchronize the instance
deployment information. The deployment config manager
is registered as a listener of this datastore, and will
trigger its callback function on any data updates. Current
prototype reserves link bandwidth by using the queuing
capacities of switches. The policy renderer calls the
OVSDB protocol to setup queues in the openflow-enabled
switches and configures the desired bandwidth parameters.



642 Tsinghua Science and Technology, December 2018, 23(6): 635–644

It also invokes openflow protocol to direct the target
traffic into these queues. In the prototype, the MN-
SLA is integrated with a container management system—
Kubernetes[7] and the SLA plugin is implemented as an
extension of Kubernetes scheduler.

The SLA scheduling algorithm is evaluated by large-
scale simulations. A simulator is developed to evaluate
different algorithms, modeling a cloud datacenter with
a three-tier network topology (i.e., ToR, aggregation,
and core)[21]. All the simulations are run with 1 000
hosts, and each host can accommodate 4 instances. In
addition, we test the algorithms with different networks
over subscription ratio of 1:16 and 1:20, respectively.
The input placement requests are generated according to
the model similar to Fig. 1. Each user may request a
network interconnecting 2–4 concatenated services, and
each service may contain 5–15 instances. The input is
generated at the scale of 300 users and is randomly re-
ordered to imitate the evolvement of user services. The
input requests are organized so that each request only
contains one instance, and the length of the input traces is
the maximum number of instances (4000) of the simulated
system.

Our scheduling algorithms have two variations, the first
one (scheduling) processes the input placement requests
with SLA sorting algorithm. The algorithm adopts the best
offer if there is enough bandwidth capacity, otherwise the
request fails and the algorithm turns to the next request.
The second algorithm (with adjustment) inherits the first
algorithm, and extends it with further scheduling. If
the network resource is not adequate to accommodate
the requests, the SLA adjustment algorithm is called to
release network resource and the first adjustment solution
is adopted to deploy the instance. If the adjustment
succeeds, the algorithm will then retry the placement.

These proposed algorithms are compared against
random placement and nearest placement algorithm. For
random placement, it first selects all the available offers
with enough capacity and then randomly picks a location
among the available ones. Likewise, the nearest placement
algorithm chooses the location with the least total distance
among the available offers. Figures 3 and 4 show the
results under different network oversubscription ratios.
The y-axis represents the ratio of accepted requests, and
each column depicts the distribution with 100 input traces.
It is observed that the median number of accommodated
instances for our first scheduling algorithm is 1.4×–2.3×
that of the nearest placement algorithm, and is 15× that of
the random placement algorithm. Especially, the proposed

Fig. 3 Scheduling results with 1:16 network
oversubscription.

Fig. 4 Scheduling results with 1:20 network
oversubscription.

algorithm achieves more improvement in networks
with higher oversubscription ratio. In addition, the
adjustment heuristic achieves the improvement of 21%–
51%, indicating that the adjustment algorithm is able to
support incremental networking SLA enforcement and is
promising to further improve the resource utilization.

6 Conclusion and Future Work

This paper introduces MN-SLA, a modular networking
SLA framework for the CMS. MN-SLA is able to be
integrated with existing CMSes with minimum efforts.
The evaluation results show that the proposed networking
SLA scheduling algorithm is able to accommodate at least
1.4× the number of instances of existing solutions and
is promising in terms of network resource utilization.
Our future work includes deployment of MN-SLA in
production environment for the evaluation of its practical
scalability and efficiency. Also, adding network latency
into the SLA scheduling matrix and incorporating dynamic
network status are also considered.



Zhi Liu et al.: MN-SLA: A Modular Networking SLA Framework for Cloud Management System 643

References

[1] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall,
Cloud computing, IBM White Paper, vol. 321, pp. 224–
231, 2007.

[2] X. Wang, Z. Liu, Y. X. Qi, and J. Li, Livecloud: A lucid
orchestrator for cloud datacenters, in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th
International Conference on, 2012, pp. 341–348.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A.
Chanda, B. Fulton, I. Ganichev, J. Gross, P. Ingram,
E. Jackson, et al., Network virtualization in multi-tenant
datacenters, in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014, pp.
203–216.

[4] V. Shivappa, An introduction to cache quality of service in
linux, http://events.linuxfoundation.org/sites/events/files/
slides/presentlinuxcon vikas 0.pdf, 2017.

[5] R. Rosen, Linux containers and the future cloud, Linux J,
no. 240, 2014.

[6] Swarm, http://www.docker.com/products/docker-swarm,
2017.

[7] Kubernetes, http://kubernetes.io/, 2017.
[8] Amazon, https://aws.amazon.com/ecs/, 2017.
[9] Azure, https://azure.microsoft.com/en-us/services/

container-service/, 2017.
[10] Virtual machines and containers in azure, https://azure.

microsoft.com/en-us/documentation/articles/virtual-
machines-linux-containers/, 2017.

[11] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A.
Vahdat, and M. Yasuda, Less is more: Trading a little
bandwidth for ultra-low latency in the data center, in
Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12),
2012, pp. 253–266.

[12] Openstack, https://www.openstack.org/, 2017.

[13] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica, Faircloud: Sharing the
network in cloud computing, in Proceedings of the
ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, 2012, pp. 187–198.

[14] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese,
NetShare: Virtualizing data center networks across
services, University of California, San Diego, Technical
Report CS2010-0957, May. 2010.

[15] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
Towards predictable datacenter networks, in ACM
SIGCOMM Computer Communication Review, 2011, pp.
242–253.

[16] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, The only
constant is change: Incorporating time-varying network
reservations in data centers, ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 199–210, 2012.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
Vl2: A scalable and flexible data center network, in ACM
SIGCOMM Computer Communication Review, 2009, pp.
51–62.

[18] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes,
and Y. Pouffary, Netlord: A scalable multi-tenant
network architecture for virtualized datacenters, in ACM
SIGCOMM Computer Communication Review, 2011, pp.
62–73.

[19] Opendaylight, https://www.opendaylight.org, 2017.
[20] P. Congdon, Link layer discovery protocol, RFC 2922,

July. 2002.
[21] T. Benson, A. Akella, and D. A. Maltz, Network traffic

characteristics of data centers in the wild, in Proceedings
of the 10th ACM SIGCOMM Conference on Internet
Measurement, 2010, pp. 267–280.

Yunsong Lu is chief architect of
networking at Huawei North America
R&D Center, and he is currently
leading research projects on AI-driving
networking, cloud networking, and
programmable micro data plane etc. At
Huawei, he founded virtual networking
lab where he created Elastic Virtual

Switch (EVS), S-DNA (Software-Defined Network
Acceleration), Canal (Container Networking Framework), and
reactive network SLA technologies etc., which have been the
fundamental building blocks of Huaweis Cloud, SDN, and NFV
solutions. Previously, he worked on Solaris Networking at Sun
Microsystems and Oracle, where he designed network resource
management and offloading, frameworks and refactored solaris
TCP/IP data path, etc.

Jun Li received the BEng and MEng
degrees from Tsinghua University, China
in 1985 and 1988, respectively, and the
PhD degree from New Jersey Institute
of Technology in 1997. He is currently
a professor at the Research Institute
of Information Technology, Tsinghua
University, China. He was a board

director of XML global and is currently a board member
or advisor of several venture capital and startup companies,
including GigaDevice and Agate Logic. He is also a deputy
director of the Tsinghua National Lab for Information Science
and Technology. He is a co-author of more than 100 papers, and
co-inventor of 10 patents. He is also a managing director of an
angle fund versatile venture capital. His research interests include
network security, pattern recognition, and image processing.



644 Tsinghua Science and Technology, December 2018, 23(6): 635–644

Zhi Liu received the BEng and PhD
degrees from Tsinghua University,
China in 2012 and 2017, respectively.
He is currently a software engineer
at Xiaomi Inc. His research interests
include software-defined networking,
high-performance packet processing
algorithms, data center networking, and

security.

Shijie Sun received the BEng degree
from Tsinghua University, China in
2017. He is currently a software
engineer in Didi Chuxing. His research
interests include computer networking
and machine learning.

Ju Xing received the BEng degree from
Xidian University, China in 2015. He
is currently a PhD student in Department
of Automation at Tsinghua University,
China. His research interests include
software-defined networking, distributed
systems, and network trouble shooting.

Zhe Fu received the BEng degree
from Tsinghua University, China in
2013. He is currently a PhD student in
Department of Automation at Tsinghua
University, China. His research interests
include cloud datacenter networks, deep
inspection algorithms, and traffic shaping
algorithms.

Xiaohe Hu received the BEng degree
from Tsinghua University, China in 2014.
He is now a PhD student in Department
of Automation at Tsinghua University,
China. His research interests include
software-defined networking, cloud
datacenter networks, network monitoring,
and management.

Jianwen Pi is currently a software
engineer and architect in Alibaba Groups.
Prior to that he has architected and led
developing many networking security and
virtual networking products in different
companies: Palo Alto networks, Huawei,
and Juniper Networks, etc. He got the
bachelor and MS engineering degrees

from Huazhong University, China and University of British
Columbia, respectively. His major research interests are
distributed networking security and networking performance in
data center.

Xiaofeng Yang is currently the director
of research center of Yunshan Networks,
Silicon Valley, US. He once worked at
the Software Lab, Huawei R&D, USA.
His research interests include network
virtualization, parallel and distributed
computing for SDN controller, and traffic
shaping. He received the BEng and master

degree from Tsinghua University, China. He has been working
on big data analytics for cloud networking behavior in the past
several years.


