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Packet classification is one of the fundamental techniques required by various network management func- 

tionalities. As the state-of-the-art of software packet classification, decision-tree algorithms employ var- 

ious geometrical cutting schemes to build optimized decision trees. However, existing cutting schemes 

cannot meet the desired performance on large rulesets because they sacrifice either classification speed 

or memory size by design. In this paper, we reveal the inefficiencies of current cutting schemes —

equi-sized cutting and equi-dense cutting — and propose a new cutting scheme and its corresponding 

decision-tree algorithm, named “BitCuts”. BitCuts achieves only 42%–59% the memory accesses of Hyper- 

Split, HyperCuts and EffiCuts, the typical decision-tree algorithms. In addition, BitCuts accelerates child- 

node indexing with bit-manipulation instructions, enabling fast tree traversal. A DPDK-based evaluation 

on the ACL10K ruleset shows that BitCuts achieves 2.0x – 2.2x the throughput of HyperSplit, HyperCuts 

and EffiCuts. Furthermore, BitCuts is the only algorithm that achieves 10 Gbps throughput with 3 cores. 

The memory consumption of BitCuts is only 12% of HyperCuts, 19% of EffiCuts, and is comparable to that 

of HyperSplit, which proves that BitCuts outperforms existing algorithms in achieving a good trade-off

between speed and space. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the rapid growth of Internet applications, both the vol-

ume and the variety of Internet traffic have increased dramatically.

Therefore, traffic management has become challenging, since it is

required to conduct fine-grained management for high-speed net-

works. In typical functionalities like access control list (ACL), qual-

ity of service (QoS) [1] , firewall (FW), and intrusion detection and

prevention (IDS/IPS), packet classification on multiple fields is the

main technique. 

Both software and hardware packet classification solutions

have been intensively studied. TCAM (Ternary Content Addressable

Memory) is the popular hardware solution since it compares the

input header value with all TCAM entries simultaneously, and thus

has the ideal O(1) search complexity. However, since ternary bit

representation is less general than arbitrary range, packet classifi-

cation rules with multiple range fields always result in substantial

number of TCAM entries, and thus limit the rule number TCAM
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upports. Previous works address this problem by proposing var-

ous port range encoding schemes [2–5] , rule compressing and

ewriting techniques [6–8] . However, such techniques still lack the

exibility to deal with large number of rules or to support more

acket fields. 

On the other hand, software based packet classification solu-

ions [9–19] have been proposed and have become a competitive

lternative. As industry and academia explore the deployment of

etwork Function Virtualization (NFV), for both cloud [20] and car-

ier [21] scenarios, there is a high demand for network functional-

ties implemented by software. In such scenarios, packet classifica-

ion is the key module that determines the throughput and latency

22] . 

To achieve fast classification speed, RFC [9] and HSM [10] adopt

he idea of decomposition. These algorithms first independently

earch on each field, and carry out crossproducting through multi-

hase lookup to generate the final match. Table search is imple-

ented through indexing, which simplifies the complexity of par-

llel lookup into O(1) for single phase. As a result, the total lookup

omplexity is bounded by the number of phases, making such al-

orithms favourable in terms of lookup speed. However, such al-

orithms are still inefficiency in terms of memory size in that the

ize of the lookup tables at each phase could be very large. 
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Table 1 

Example ruleset. 

Rule Field X(Bit 0–2) Field Y(Bit 3–5) 

R 0 100 010 

R 1 100 011 

R 2 11 ∗ 011 

R 3 111 001 

R 4 10 ∗ ∗∗∗

R 5 
∗∗∗ 00 ∗

Fig. 1. Geometrical layout of rules in Table 1 . 
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As the state-of-the-art of software packet classification,

ecision-tree algorithms solve the problem geometrically, by de-

omposing rule space recursively and building a decision tree. Typ-

cal decision-tree methods include HiCuts [11] , HyperCuts [12] , Hy-

erSplit [13] , ABC [14] , Boundary Cutting [15] , EffiCuts [16] , etc.

t is proved in [23] that constructing the optimal decision tree is

P-complete. Therefore, these algorithms employ various heuristic

o choose a good cutting and trade-off between speed and mem-

ry. To further optimize the space consumption for decision trees,

rouping [16,24,25] and data structure compressing [26,27] tech-

iques are also studied. However, existing decision-tree algorithms

till have inefficiency in their space decomposition schemes, result-

ng in redundant cutting or degraded classification speed. 

This paper proposes BitCuts, a decision-tree algorithm that per-

orms bit-level cutting. The contributions of this paper are sum-

arized as follows: We study the cutting schemes of existing

ecision-tree algorithms, and reveal their inefficiencies in terms

f speed and space. A new cutting scheme named BitCuts and its

orresponding decision-tree construction algorithm are proposed.

Bit-level cut” is able to zoom into densely clustered rule space

nd cut at the right granularity, which avoids unnecessary parti-

ions and excessive memory consumption. BitCuts uses parallel bit-

ndexing to support fast child-node traversal and enable large node

anout. For 5-tuple rules, the child-node indexing can be imple-

ented by two bit-manipulation instructions, achieving ultra-fast

ecision-tree traversal. In order to build an efficient decision tree,

 bit-selection algorithm is proposed to determine the cutting bits

t each tree node, targeted at finding the most effective bits for

eparating the rules. 

BitCuts achieves an optimized trade-off that obtains high clas-

ification speed and reasonable memory consumption. The eval-

ation shows that BitCuts outperforms HyperCuts and EffiCuts in

oth speed and space, with the same parameter configurations. A

PDK-based evaluation shows that BitCuts achieves about 2.0x –

.2x the throughput of existing algorithms on large rulesets, and is

he only algorithm that achieves 10Gbps throughput with 3 cores.

he memory consumption of BitCuts is only 12% of HyperCuts, 19%

f EffiCuts, and comparable to that of HyperSplit. Meanwhile, its

emory consumption is less than 1MB for the ACL10K ruleset. 

The remainder of the paper is organized as follows.

ection 2 introduces related decision-tree algorithms. Section 3 re-

eals the inefficiency of the existing cutting schemes, based on

 rule distribution study, and proposes the new cutting scheme

BitCuts”. Section 4 gives the high-level overview of BitCuts and

ntroduces the procedures of Bitcuts: offline preprocessing and

nline classification. Section 5 elaborates upon how the cutting

its are selected at each node during the tree construction, and

he algorithm’s trade-off between speed and space. The imple-

entation details of BitCuts are illustrated in Section 6 , and the

valuation results are shown in Section 7 . Section 8 contains some

iscussions, and we draw conclusions and describe future work in

ection 9 . 

. Background 

Given a group of pre-defined rules, the task of packet classifi-

ation is to identify the matching rule for each input packet. Each

ule R contains d header field specifications, R [1] , R [2] . . . R [ d] , each

ritten in prefix or range representation. Typical header fields

nclude source IP (SIP), destination IP (DIP), transport layer pro-

ocol (PROTO), source port (SP) and destination port (DP), etc.

n incoming packet matches the rule only if each corresponding

acket header field H [1] , H [2] . . . H [ d] matches the rule specifica-

ion R [1] , R [2] . . . R [ d] . Each R also contains a Priority and an Action .

f multiple rules match the input packet, the one with the highest

riority is returned and the associated Action is applied. 
Most decision-tree algorithms solve the problem by conducting

eometric “cuts” in the d -dimensional rule space. For those algo-

ithms, each rule is taken as a d -dimensional hyper-rectangle, and

ach input packet represents a point in such a space. Table 1 gives

n illustrative example ruleset with two fields, each represented

y a 3-bit prefix. The corresponding geometric layout is shown in

ig. 1 . Given the above problem formulation, existing decision-tree

lgorithms employ various preprocessing techniques to optimize

he cuts and build the corresponding decision tree. Each “cut” de-

omposes the space into multiple partitions, and each of the par-

itions corresponds to a child node as well as the rules colliding

ith it. Two key metrics are widely used to measure the deci-

ion trees – memory access number and memory size. Specifically,

he number of memory accesses required in the tree traversal is

losely related to the online classification speed. Mostly, both num-

er of average and worst memory accesses are used for the mea-

urement. Meanwhile, the size of the decision tree is also an im-

ortant consideration, which determines the possibility to fit into

ain memory and influences the cache miss rate. Therefore, the

ecision tree should require a limited number of memory accesses,

s well as moderate memory size, so that it might fit into the

ache. 

The following subsections give an overview of typical decision-

ree algorithms, including HiCuts [11] , HyperSplit [13] , HyperCuts

12] and EffiCuts [16] . 

.1. HiCuts 

HiCuts (Hierarchical Intelligent Cuttings) [11] is a seminal

ecision-tree algorithm for packet classification. To illustrate how

iCuts works on the example ruleset, Fig. 2 a shows how the cut-

ings are conducted in the geometrical view, and the correspond-

ng decision-tree is given in Fig. 2 b. At each node, HiCuts cuts
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Fig. 2. Example of HiCuts. 
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the corresponding rule space into 2 k equal-sized partitions along

a single dimension. As shown in Fig. 2 b, the root node represents

the whole space, and cuts the space into 8 partitions along Field

Y. Each of the 8 child nodes represents one of the partitions as

well as the rules colliding with it. The cutting stops when the rule

number of the node is below a pre-defined parameter BINTH (Bin

Threshold), configured as 2 in our example. From Fig. 2 b, it is ob-

served that Child 0, 2, 4 – 7 of root node do not need further cut-

tings. In this case, a leaf node will be initialized, containing a block

of the pointers referencing the corresponding rules. In contrast,

each of the non-leaf nodes (root, Child 1 and 3) holds a d-tuple

specification of its covering space, the cutting dimension, partition

number, as well as a child pointer array that contains the addresses

of child nodes. During the classification, the incoming packet tra-

verses from the root node and calculates the child index for the

next traverse. Since HiCuts cuts the space equally, the index calcu-

lation simply requires dividing the width of cutting dimension by

the partition size. The node traversal recurs until the a leaf node is

encountered. Then a linear search among the leaf node rules will

be conducted to determine the highest-priority match. 

Since HiCuts cuts the space by powers of two, fine-grained cut-

tings always lead to duplications of large rules and result in ex-

ponential memory increases. HiCuts constrains the memory explo-

sion by limiting the total number of rules in all its children within

a pre-defined factor, named space factor (or spfac ), of the number

of rules contained in this node. For the cutting dimension, HiCuts

tries to cut each dimension based on the spfac , and finally chooses

the dimension to minimize the maximum number of rules in each

child. 

2.2. HyperCuts 

HyperCuts [12] improves upon HiCuts in that it is able to cut

multiple dimensions simultaneously, instead of cutting one single

dimension at a node. Similar to HiCuts, HyperCuts cuts the space

of each non-leaf node evenly and uses a pointer array to simplify

child indexing. 

Due to the design of multidimensional cutting, the heuristic

of choosing the cutting dimensions and partition number is more

complex. For the total partition number of a non-leaf node, Hyper-

Cuts borrows an idea from HiCuts. It bounds the maximum par-
ition number by a function of N : f (N) = sp fac ∗
√ 

N , where N is

he number of rules corresponding to the current node and spfac

space factor) is defined beforehand by the user. 

Given the bound of the maximum partition number, the com-

lexity of the heuristic falls in how to determine the optimized

ombination of cutting dimensions and the partition number of

ach dimension. For the cutting dimensions, HyperCuts projects

he rules on each dimension and counts the number of unique seg-

ents. The algorithm then chooses the dimensions with numbers

bove the average. To determine the partition number of each di-

ension, the heuristic first separately derives the local optimum

artition number for each dimension. It then tries to generate a

ultidimensional cutting by combining the cuts of multiple di-

ensions and slightly adjusting the partition number around a lo-

al optimum. 

.3. HyperSplit 

For HiCuts and HyperCuts, the cutting algorithm can generate a

arge number of identical nodes due to the fine-grained cuttings

17,28] . Such duplications leads to a considerable memory foot-

rint, and might even exceed the memory limit. To tackle this

roblem, HyperSplit [13] is proposed, to improve memory effi-

iency as well as to provide moderate classification speed. The idea

f HyperSplit is to build a balanced binary tree so that the rules

re distributed evenly among its children, and therefore prevent

xcessive rule duplication. Therefore, HyperSplit conducts binary

uttings along the boundaries of the rules. Each non-leaf node of

 HyperSplit decision tree chooses a single dimension and an end-

oint value, to cut the search space into two halves. A heuristic

s introduced to choose the best dimension and threshold for the

inary cutting. It first projects the rules along each of the d di-

ensions, resulting in a number of end-points in each dimension,

nd then chooses the dimension with the most end-points. Along

he selected dimension, it chooses the end-point so that rules are

istributed evenly among the two resulting partitions. A child node

nd its colliding rules are generated for each partition. Fig. 3 shows

he geometrical cuttings and the resulting decision tree of Hyper-

plit on the example ruleset. The space decomposition stops when

he number of rules colliding with the node is below BINTH , con-
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Fig. 3. Example of HyperSplit. 
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gured as 2 in this example, or the search space is fully covered

y its highest priority rule. 

.4. EffiCuts 

EffiCuts [16] is one of the latest major works for packet classi-

cation. As an improvement of HyperCuts, EffiCuts has two major

ontributions — grouping and equi-dense cutting. To achieve lower

emory size, EffiCuts divides rules into subsets so that rules in

he same subset are easier to separate and cause moderate rule

eplications. To be more specific, it identifies a subset of rules to

e “separable” if all the rules in this subset are “either large or

mall in each field”. The intuition is that, fields with smaller rules

re cut since there are more unique projections. And the replica-

ion introduced by cutting can be dramatically reduced if there is

o large rule on such fields. However, the above grouping strat-

gy may result in more than 20 subsets. To tackle this problem,

ffiCuts conducts further merging to reduce the total subset num-

er. The merging policy guarantees that, at most one field in the

esulting subset contains both large and small rules. The resulting

umber of subset is 5–6 for the evaluated rulesets. 

On the other hand, EffiCuts improves on HyperCuts in that it

roposes Equi-dense Cutting. The idea is to conduct fine cuttings

t regions where rules are densely-clustered, and conduct coarse

uttings elsewhere. Such unequal cutting is achieved by fusing

he original equi-sized sibling of HyperCuts. The fusing heuris-

ic iteratively merges continuous siblings with some redundant

ules, and ensures that the rule number of resulting nodes do

ot exceed the maximum of original siblings. Due to such design

f fusing, the child node indexing requires binary search among

used nodes. Therefore, the fusing is only conducted if the num-

er of resulting nodes is no larger than 8. Compared with Hyper-

uts, such improvement merges a large number of child nodes,

ut may increase the depth of the tree. Overall, the primary

enefit of Equi-dense Cutting is to further reduce the memory

ize. 
. Motivations 

.1. Rule distribution of real-life rulesets 

The distribution of rules greatly impacts the decision-tree met-

ics and is an important consideration in the algorithm design.

herefore, an in-depth study of the ruleset distribution is made.

he real-world rulesets from [29] are used, which contain rules

or ACL (Access Control), FW (Firewall), and IPC (IP Chain). As an

xample, the distribution of the ACL ruleset is depicted in Fig. 4 a

y two dimensions — SIP and DIP. This ruleset contains 753 rules,

ith 97 distinct SIP ranges and 205 distinct DIP ranges. The red

ots represent rules with small IP ranges or exact IPs. The lines

or rectangles) stand for rules with large ranges, such as the verti-

al lines (e.g., SIP 15.0.0.0/8, DIP 0.0.0.0/0; SIP 192.151.10.0/23, DIP

.0.0.0/0), and horizontal line (e.g., SIP 0.0.0.0/0, DIP 15.0.0.0/8).

aking a closer look, Fig. 4 b and Fig. 4 c zoom into the high-

ighted region 1 (SIP 192.0.0.0/4, DIP 0.0.0.0/4), and region 2 (SIP

92.0.0.0/8, DIP 144.0.0.0/4) respectively. Fig. 4 d zooms into the

ighlighted region 3 (SIP 192.151.0.0/20, DIP 156.144.0.0/12). In all

he figures, the default rule (SIP 0.0.0.0/0, DIP 0.0.0.0/0) is omitted

or brevity. According to our studies, two fundamental patterns are

evealed here. It is worth noting that, the patterns discovered are

lso consistent with the findings in [14] . 

mall ranges are co-located. As shown in Fig. 4 b, 582 rules are clus-

ered at the top-left region (SIP 192.151.10.0/23, DIP 15.0.0.0/8), ac-

ounting for 77% the rules of the ACL ruleset. In addition, these

ules co-located in a tiny region, which only covers 1/2 19 the SIP

ange (192.0.0.0/4) and 1/2 4 the DIP range (0.0.0.0/4) of the Fig. 4 b

egion. Such an obvious clustering pattern originates from the fact

hat these rules are constructed to regulate the outbound traffic

f hosts in particular subnets. Specifically, nearly all of the source

osts belong to the subnet of 192.151.10.0/23, and a large portion of

nvolved DIPs are within 15.0.0.0/8. Such clustering also applies to

egions containing a small number of rules. For instance, in Fig. 4 c

here 48 rules are located, 40 of 48 rules (83.3%) are clustered
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Fig. 4. Distribution of ACL1 ruleset on IP fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

p  

c  

t  

f  

v

3

 

r  

T  

m

E  

H  

a  

e  
within region 3. The co-locating pattern is also observable in port

fields. 

Fig. 5 a and b depict the distribution of destination port of FW

(271 rules) and IPC (1551 rules) rulesets, shown by CDF 1 . The x-

axis represents the value range of destination port field, i.e. [0,

65535]. Since port ranges specified by rules are of various length,

every integer value within each range is taken as a data point. The

distribution is shown by plotting the CDF for all the resulting data

points. It is discovered that the port field also manifests a skewed

distribution across the value range. 

Wildcard rules overlap with small ranges. In Fig. 4 it is found that

rules with small ip ranges, which account for the majority of rules,

are commonly covered by large ranges. The most typical exam-

ple is that the default rule covers all the other rules. As shown

in Fig. 4 d, the vertical rectangle (SIP 192.151.10.0/23, DIP 0.0.0.0/0)

covers nearly all the small range rules. Moreover, in the upper part

of Fig. 4 b, 582 rules are covered by the rule (SIP 0.0.0.0/0, DIP

15.0.0.0/8). For port fields, there are also a couple of large ranges
1 The large port ranges, such as [0, 65535], [0, 1023], [1024, 65535], are removed 

before plotting the figures 

d  

a  

a  

s  
e.g. [0, 65535], [0, 1023], [1024, 65535]) that overlap with exact

ort values. This pattern results from common practices of rule

onstruction. Network administrators commonly use wildcard rules

o cover a large portion of hosts and transport layer ports to en-

orce the default action, and write rules with small ranges (or exact

alues) to specify the actions for particular hosts and applications. 

.2. Inefficiency of existing cutting schemes 

According to the algorithm review above, decision-tree algo-

ithms can be categorized based on their approach to “cutting”.

he design of cutting implies a tradeoff between search time and

emory size, resulting in different pros and cons. 

qui-sized cutting. Equi-sized cutting is employed by HiCuts and

yperCuts. This scheme cuts the rule space equally at each node

nd simplifies the indexing to child nodes. The child index is gen-

rated by dividing the header value by the partition width on each

imension and combining the quotients together. Therefore, such

lgorithms are able to build up broader and flatter decision trees,

chieving fast lookup. When rules are distributed uniformly, equi-

ized cutting is able to distribute them evenly among child nodes.
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Fig. 5. Distribution of port fields. 
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owever, as we discovered in our ruleset study, a number of wild-

ard rules overlap with large portions of co-located small rules.

herefore, fine cuts are required to separate the small rules, re-

ulting in excessive child nodes and wildcard rule duplication. This

eads to substantial memory consumption for decision trees, espe-

ially on large and highly overlapped rulesets. 

qui-dense cutting. HyperSplit and EffiCuts belong to this category.

nstead of cutting with fixed width, this scheme cuts along ap-

ropriate rule boundaries so that the rules are distributed evenly

mong the resulting child nodes. Since the intervals between the

utting boundaries are not uniform, during packet lookup, the ar-

ay of cutting boundaries must be searched through to find the

atching child. The complexity is at least O ( log ( n )) with n parti-

ions, higher than the O (1) complexity of equi-sized cutting. There-

ore, the fanout of such decision trees is alway limited, which

lso leads to the increase of tree depth. On the other hand, these

lgorithms are able to achieve lower memory overhead due to

heir narrowness and careful selection of the splitting boundaries.

herefore, algorithms with equi-dense cutting essentially trade

earch speed for memory size, providing moderate search speed

ith lower memory consumption. 

This paper proposes an approach that improves on existing cut-

ing schemes by introducing “BitCuts”, where each cut consists of

he operations on a number of discrete bit positions. Fig. 6 b shows

ow BitCuts classifies the rules in Table 1 . The cut in this example

onsists of three bits — B 1 , B 4 , and B 5 — resulting in eight child

odes. Each child node represents a group of subregions, and each

roup is identified by the same unique bit value. 

Since most rules in Table 1 contain the same value — B 0 = 1 ,

 3 = 0 — they are geometrically co-located in one-fourth of the

hole space (highlighted area at bottom right), as shown in Fig. 6 a.

e observe that the three cutting bits effectively discriminate the

ules, without generating too many child nodes. Although each

hild node also incorporates subregions in the other three-fourths

f the space, they do not contribute additional duplicated rules

nto the child nodes. The reason is that these subregions only con-

ain rules with wildcard fields, which cover the same child nodes

s in the bottom-right region. As shown in Fig. 6 a, R 5 covers the

ame child nodes in the bottom-left and bottom-right areas, and it

s the same for R 4 in the top-right and bottom-right areas. 

Compared with existing cutting schemes, BitCuts has the fol-

owing advantages: 
- Efficient cutting. By choosing the appropriate cutting bits at

each node, BitCuts is able to separate the rules efficiently with-

out excessive partitions, and therefore achieves fewer memory

accesses and reasonable memory consumption. 

- Fast indexing. BitCuts uses parallel bit indexing to support

fast child-node traversal and large node fanout. For 5-tuple

rules, the child node indexing can be implemented by two

bit-manipulation instructions, enabling ultra-fast decision-tree 

traversal. 

Compared with typical packet classification algorithms, BitCuts

achieves faster tree traversal than both equi-sized and equi-

dense cutting algorithms. Also, the memory size of BitCuts is

comparable to those of equi-dense algorithms. Therefore, Bit-

Cuts is able to improve upon the current trade-off, achieving

faster classification speed while retaining reasonable memory

size. 

. Bitcuts overview 

Before diving into the detailed design of BitCuts, we provide an

verview of BitCuts by introducing its two stages: offline prepro-

essing and online classification. 

.1. Offline preprocessing 

The offline processing takes the ruleset as input, and constructs

he BitCuts decision tree for the online classification to traverse

uring packet lookups. Similar to other decision-tree based algo-

ithms, BitCuts constructs a multi-layer decision tree by recursively

utting the rule space to reduce the search scope. Specifically, each

ode in the decision tree contains a bitmask, where the “ones” in-

icate the positions of “cutting bits”, which are used to index the

hild nodes. The bit positions are discrete, and are selected care-

ully during the preprocessing. As shown in the example of Fig. 6 a,

itCuts generates a group of child nodes according to the bitmask,

nd each child node corresponds to a set of subregions with the

ame bit values. The goal of the bit selection heuristic, which will

e explained later, is to achieve better rule separation among the

hildren, and therefore lower the tree depth with a moderate num-

er of cutting bits. 

The recursive building algorithm of the BitCuts decision tree is

hown in Algorithm 1 . The function firstly checks whether the rule

umber in ruleset is below a threshold BINTH . If so, a leaf node

ontaining these rules is initialized. In cases where the rule num-

er is above BINTH , the function first calls the bit-selection heuris-



44 Z. Liu et al. / Computer Communications 109 (2017) 38–52 

Fig. 6. Example of bit-level cuts. 

Algorithm 1 Tree-building algorithm. 

1: function BuildNode ( ruleset , node ) 

2: if r uleset.r ule _ num ≤ BINT H then 

3: Init Lea f (ruleset , node ) 

4: else 

5: bitmask = BitSel ection (rul eset) 

6: bitnumber = bit _ num (bitmask ) 

7: node → bitmask = bitmask 

8: node → child _ base = mal l oc(node _ size ∗ (1 � bitnumber)) 

9: node → type = INT ER 

10: buckets = Spl itRul es (rul eset, bitmask ) 

11: for i = 0 to (1 � bitnumber) − 1 do 

12: Build Nod e (buckets [ i ] .ruleset, node → child _ base + i ) 

13: end for 

14: end if 

15: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 BitCuts searching algorithm. 

1: function BitcutsSearch ( header _ tuples ) 

2: node = root 

3: while node → type ! = LEAF do 

4: index = Bit Indexing(header _ t uples, node → bitmask ) 

5: node = node → child _ base + index 

6: end while 

7: return LinearSearch (node ) 

8: end function 
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tic BitSelection () to acquire bitnumber bits. With the selected bits,

SplitRules () divides the rules into 2 bitnumber buckets. Then the algo-

rithm iterates through each of the buckets, and calls itself to recur-

sively build the child node for the corresponding subset. 

4.2. Online classification 

After the offline preprocessing stage, the Bitcuts decision tree is

constructed as shown in Fig. 7 , with non-leaf nodes and leaf nodes

annotated with different colors. In a tree node structure, a flag is

included to indicate leaf or non-leaf. Besides that, each leaf node

contains the rule number to search linearly, and a pointer that ref-

erences the block containing these rule addresses. Each non-leaf

node contains a bitmask, and a base pointer to the array of child

nodes on the next level. Since the children of the same node are

stored linearly, BitCuts aligns the size of the nodes when there are

both leaf and non-leaf child nodes. The bold arrows in Fig. 7 show

an example of the packet lookup. The tree is traversed recursively

from root . The classification procedure is detailed in Algorithm 2 .

In BitCutSearch (), BitCuts first accesses the root node, and calls

BitIndexing () to calculate the index to the child node based on bit-

mask and header _ tuples . BitIndexing () extracts the bits indicated by
itmask from header _ tuples, and concatenates the bits to generate

he child index, indicating the next node to traverse. This recur-

ion continues until it reaches a leaf node and gets a list of rule

ointers, and then the packet is compared with each of the rules

eferenced by the pointers to get a final match. 

. Bit-selection algorithm 

This section introduces the algorithm designed to build the bit-

ask during the tree-building procedure. The goals of the bit-

election algorithm are twofold: First, rule separation, with a view

o eliminating a large portion of rules from further consideration

s the decision tree is traversed; second, the bit-level cutting at

ach node should not introduce too much memory overhead. 

For algorithms like HiCuts, HyperSplit, HyperCuts and EffiCuts,

he preprocessing algorithms cut the spaces into partitions, and

eep track of the number of rules in each child. The tree-building

ecursion stops when the number of rules in the child node is be-

ow BINTH . 

.1. Bit separability 

BitCuts takes another perspective for this procedure. That is,

ach cut “separates” a number of rules. As the decision tree is built

nd more cuts are involved, more rules are separated among the

hild nodes. The formal definition of rule separation is as follows: 

efinition 1. Given the cutting C that divides the ruleset F = { R 0 ,

 1 , ... R N−1 } into m buckets K = { K 0 , K 1 , ... K M−1 }, the rule pair ( R s ,
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Fig. 7. Overall BitCuts lookup procedure. 

Fig. 8. Rule pairs separated by bits. 
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 d ) is defined as separated iff R s and R d do not co-locate in any of

he buckets in K. 

Fig. 8 b illustrates how the rules are separated by each bit based

n the example in Fig. 6 . B 1 divides the original ruleset into two

ubsets: { R 0 , R 1 , R 4 , R 5 } and { R 2 , R 3 , R 5 }. After examining the rule

airs that do not co-located in the same bucket, it is found that

he separated rule pairs are S 1 = {( R 0 , R 2 ), ( R 0 , R 3 ), ( R 1 , R 2 ), ( R 1 ,

 3 ), ( R 2 , R 4 ), ( R 3 , R 4 )} are separated. Likewise, the separated rule

airs of Bit 4 are S 4 = {( R 0 , R 3 ), ( R 0 , R 5 ), ( R 1 , R 3 ), ( R 1 , R 5 ), ( R 2 , R 3 ),

 R 2 , R 5 )}. 

As is shown in the above example, each bit corresponds to a

et of rule pairs that it separates, which is an important measure-

ent of the effectiveness of the bit. This is called a “Bit Separa-

ility Set”(BSS) in BitCuts. For example, B 0 and B 3 do not separate

ny rules in Table 1 , so the size of their BSSes are zero, and the

ut should not incorporate such bits. 

.2. Cut separability 

In BitCuts, the cut of each node may incorporate multiple bits

or better rule separation. The separability of a single cut is derived
ased on the above definition of bit separability. Considering the

ut consisting of B 1 and B 4 , as shown in Fig. 8 , the examination of

he resulting buckets reveals that the separated rule pairs are {( R 0 ,

 2 ), ( R 0 , R 3 ), ( R 0 , R 5 ), ( R 1 , R 2 ), ( R 1 , R 3 ), ( R 1 , R 5 ), ( R 2 , R 3 ), ( R 2 , R 4 ),

 R 2 , R 5 ), ( R 3 , R 4 )}, which happens to be the union of S 1 and S 4 . 

heorem 1 (Composition of Bit separability) . Let the separated

ules corresponding to bit B i be the set S i = { (R i s 1 , R 
i 
d 1 

) , (R i s 2 , R 
i 
d 2 

) ,

.. (R i s l 
, R i 

d l 
) , ... }, where s l < d l . For a “cut” C consisting of bits

 i 1 
, B i 2 . . . B i w , the separated rule pairs of the cut obey S C ⊇ S i 1 ∪

 i 2 
. . . ∪ S i w . 

roof. For any rule pair (R 
i k 
s l 
, R 

i k 
d l 

) ∈ S i k , k = 1 . . . w, the separated

wo rules must have different values at bit B i k — i.e. R 
i k 
s l 

[ B i k ] =
 0 , R 

i k 
d l 

[ B i k ] = v 1 , v 0 
 = v 1 , v 0 
 = 

∗, v 1 
 = 

∗. For the “cut” con-

isting of B i 1 , B i 2 . . . B i m , R 
i k 
s l 

must be located within the buckets

hose index value on B i k is v 0 , and R 
i k 
d l 

must be located within

he buckets whose index value on B i k is v 1 , so that R 
i k 
s l 

and R 
i k 
d l 

ust be located at different child nodes and be separated. That



46 Z. Liu et al. / Computer Communications 109 (2017) 38–52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t  

u  

r  

B  

d  

a

5

 

c  

p  

t  

s  

r  

W  

c  

t

W  

g  

o  

t  

w  

p  

P  

l  

t

5

 

r  

t  

s  

i  

a  

b  

c  

b  

v  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is, for any (R 
i k 
s l 
, R 

i k 
d l 

) ∈ S i k , k = 1 . . . w, (R 
i k 
s l 
, R 

i k 
d l 

) ∈ S c . Therefore S C ⊇
S i 1 ∪ S i 2 . . . ∪ S i w . �

By Theorem 1 , the separability of one cut could be generated by

the union of the BSSes. Note that this is an approximation of the

cut separability, since the union may not cover all the pairs sepa-

rated by the cut. For example, ranges [0, 2] and [3, 3] can only be

separated when the least two bits are involved at the same time,

and neither of the bits is able to separate the ranges individually.

Therefore, BitCuts takes these rules as inseparable and excludes

such rule pairs in the following bit-selection algorithm. Although

this design choice sacrifices optimum bit selection, we still find the

evaluation result superior to those of competing algorithms. 

5.3. Bit-selection algorithm design 

According to the “rule separation” perspective, the bit selec-

tion procedure could be analogized to a Set-Cover Problem. Con-

sider the ruleset R = { R i , i = 1, ..., N}. A group of subsets S =
{ S 1 , S 2 , . . . , S w 

} has w elements, where S i is a set of rule pairs sep-

arated by B i , representing the bit separability. The universe of the

rule pairs is U = { S 1 ∪ S 2 . . . ∪ S k . . . ∪ S w 

} , k = 1 , . . . , w . There-

fore, the bit selection procedure could be formulated as finding

a minimum set of S so that all the elements of U are covered. 2 

According to the SCP formulation, ideally the selected bits should

cover all of the rule pairs in U . However in the construction of a

multi-layer decision tree, the bit selection should stop as the num-

ber of children grows excessively. Therefore, the actual bit selec-

tion algorithm is more complex and uses the SCP formulation as a

heuristic for bit selection. The bit-selection algorithm is shown in

Algorithm 3 . 

Algorithm 3 Bit-selection algorithm. 

1: function BitSelection ( ruleset , pre v _ bitmask ) 

2: cand id ate _ bits ← al l _ bits.Excl ude (pre v _ bitmask ) 

3: bitmask ← {} 
4: bs _ matrix ← Cal cul ateBitSeparabil ity (rul eset, cand id ate _ bits ) 

5: while T rue do 

6: newbit ← Select Best Bit (bs _ mat rix, cand id ate _ bits ) 

7: cand id ate _ bits ← cand id ate _ bits − newbit 

8: bitmask ← bitmask ∪ newbit 

9: buckets ← BitSpl itRul es (bitmask, rul eset) 

10: if MeetStopC rit eria (buckets ) then 

11: break; 

12: end if 

13: U pdateBitSeparability (bs _ matrix, newbit) 

14: end while 

15: return bitmask, buckets 

16: end function 

The algorithm initializes candidate_bits and bitmask , so that the

bits included in the ancestor nodes are excluded from the current

selection (Line 1 - 2). Then it calls CalculateBitSeparability() , to cal-

culate the BSS for each bit (Line 3). Afterwards, the algorithm en-

ters the iteration to choose a number of bits in the bitmask, where

each iteration picks one bit according to a greedy strategy. Inside

the iteration, the algorithm examines the separability of each can-

didate bit, and adds the bit with the largest BSS to the bitmask

(Line 6 - 8). The new bitmask is then used to split the ruleset

into buckets (LIne 9). With the buckets generated, the algorithm

decides whether bit selection should stop by examining the stop
2 Note that here U is not all the rule pairs. Here we only consider the rule pairs 

that can be separated by individual bits. 

 

 

 

riteria(Line 10). If any of the criteria is met, the algorithm re-

urns bitmask together with buckets (Line 15); otherwise, it contin-

es with the iteration. Since the added bit might separate some

ules included in other separability sets, the algorithm updates the

SS of the other candidate bits before the next iteration. The up-

ate operation simply requires subtracting the pairs in the BSS of

dded bits from the BSSes of other candidate bits (Line 13). 

.4. Bit separability calculation 

In order to implement the heuristic, CalculateBitSeparability() is

alled to generate the BSS for each bit. A brute-force calculation

roceeds as follows: For each pair of rules, test each bit to de-

ermine if the two rules can be separated. Each bit testing of a

ingle rule requires shifting and bitwise AND. This implementation

equires N 

2 × W bit testings, where N is the number of rules and

 is the rule width in terms of bit. In our implementation, Cal-

ulateBitSeparability() instead conducts bit testing for all the rules,

o split them into two groups (1 or 0), which only requires N ×
 bit testings. Afterwards it iterates through the two groups and

enerates the “Separated Rule Pairs”. For example, consider the BSS

f bit 1 in Fig. 8 . Given the N = 6 rules, 6 bit testings will generate

wo groups based on the bit value (0, 1, or ∗) of the rule. When the

ildcard bit of a certain rule is encountered, it will result in du-

lications (e.g., R 5 ) and does not contribute to any “Separated Rule

airs”. Such rules are removed from both groups during the calcu-

ation. Then an iteration through the two groups will generate all

he rule pairs separated by one bit. 

.5. Bit-selection stop criteria 

As shown in Algorithm 3 (line 10), in each iteration the algo-

ithm checks whether to continue the bit selection, and returns

he current bitmask if any of the stop criteria is met. A “speed-

pace” tradeoff is involved in the criteria. On one hand, incorporat-

ng more bits in one “cut” will contribute to better rule separation

nd lower tree depth. However, for a tree node with m activated

its in its bitmask, the number of child nodes is 2 m . The memory

onsumption incurred by the cut increases exponentially as more

its are selected. Therefore, the stop criteria are essential to pre-

ent memory explosion. In BitCuts, the bit selection stops if any of

he following criteria is met: 

- The space factor (Spfac) reaches a pre-defined threshold . As-

sume that m bits were selected and the original N rules were

divided into 2 m buckets, where bucket i has N i rules. Define the

space factor: 

Sp fac = 

( 

2 m −1 ∑ 

i =0 

N i + 2 

m 

) 

/N (1)

As shown in Eq. (1) , the space factor is defined as the ratio

between the total number of children plus all child rules (an-

tecedent) and the number of parent rules (consequent). There-

fore, the space factor implies the space expansion ratio caused

by the current cut. 

- The maximum rule number of all the buckets is below BINTH

(Bin Threshold) . Similar to the definition in other decision-tree

algorithms, BINTH is an important parameter in balancing speed

and space. A higher BINTH will make a shorter decision tree,

and thus save memory size. Generally, the BINTH check is con-

ducted before constructing a node to decide leaf or non-leaf,

and is included in Algorithm 1 (Line 2). Since BitCuts actually

merges multiple cuts into one node, the bit-selection algorithm

need to keep track of the maximum number of bucket rules,
and stop the bit selection when it drops below BINTH . 
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Fig. 9. Bit Indexing using PEXT instruction. 
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Algorithm 4 Rule splitting algorithm. 

1: function BitSplitRules ( rule, bitmask, buckets ) 

2: rule _ bit st rings ← con v ert _ rule _ to _ bit st rings (rule ) 

3: for bit st r ing in r ule _ bit st rings do 

4: wild card _ pos _ encode = 0 

5: wild card _ number = 0 

6: exact _ bitv alue = 0 

7: � Extract the exact-value bits and wildcard positions of 

the prefix 

8: for i = 0 to bitmask.bit _ number − 1 do 

9: pos = f ind _ ith _ one (bitmask, i ) 

10: if bit st ring[ pos ] is “ ∗′′ then 

11: wild card _ pos _ encode | = (1 � i ) 

12: wild card _ number + + 

13: else 

14: exact _ bitv alue | = (bit st ring[ pos ] � i ) 

15: end if 

16: end for 

17: � Enumerate through each possible index that the prefix 

falls into 

18: for v = 0 to (1 � wild card _ number) − 1 do 

19: wild card _ bitv alue = P DEP (v , wild card _ pos _ encode ) 

20: v alue = wild card _ bitv alue | exact _ bitv alue 

21: bucket[ v alue ] .ad d (rule ) 

22: end for 

23: end for 

24: end function 
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. Implementation of bit-level operations 

This section introduces the implementation of the important

it-level operations involved in both the offline and online proce-

ures of BitCuts, namely BitIndexing () and BitSplitRules (). 

.1. Bit indexing 

Bit indexing implements the bit-level cutting of the online clas-

ification stage. One brute-force approach to bit indexing is to

shift and compare” to extract each individual bits and concate-

ate them to the child index. Considering a packet header with W

its, the complexity of such operations is O ( W ). In BitCuts, bit in-

exing is implemented by PEXT(Parallel Bits Extract) [30] instruc-

ion. PEXT is included in the BMI2 instruction set, which was intro-

uced with the Intel Haswell processor, and currently is supported

y a wide range of processors [31] . The operations of PEXT are il-

ustrated in Fig. 9 . It extracts arbitrary bit positions, as specified

n Bitmask , from PacketHeader . The instruction takes only 3 cycles

nd supports data length of 64 bits on Intel 64 architecture [32] .

or 5-tuple header (104 bits), the bit indexing takes up to 2 PEXT

perations, which is far more efficient than “shift and compare”

nd enables fast lookup for BitCuts decision trees. 

.2. Bit split rules 

Function BitSplitRules is called in the preprocessing stage

shown in Algorithm 3 , Line 5). Given the bitmask and a rule, the

unction BitSplitRule determines which of the child nodes the rule

alls in. Since fields like IP addresses are represented by binary pre-

xes, we can easily get the corresponding bit value (0, 1 or ∗) in

uch fields. However, for range-based fields, it is nontrivial to de-

ive the value for a certain bit position. Therefore, the algorithm

itSplitRule is designed as Algorithm 4 to tackle this problem. 

The BitSplitRule algorithm first converts the input rule into a

et of prefix-represented rules (PRR). Although the IP and Pro-

ocol fields are inherently prefixes, the port fields are specified

y ranges, and can be expressed by multiple prefixes. There-

ore, con v er t _ r ule _ to _ bit st rings first converts each rule into mul-

iple PRR representations. Although this conversion increases the

umber of entries to split, these PRRs are shown as the original

ule in the resulting buckets and do not introduce additional rule

uplication. 

With the bitmask and converted PRRs for the input rule, Bit-

plitRule then iterates through each PRR and determines all the

uckets that the rule falls into. Note that the input rule falls in one

ucket if any of its converted PRRs falls into it. Given m selected bit

ositions, the number of buckets is 2 m . A brute-force solution is to

heck each of the 2 m buckets and see if the selected bit values of

 prefix cover the index value, which has the complexity of O (2 m ).

n optimization is made to cut down the overall complexity. The

lgorithm checks the prefix at the selected bit positions and ex-

racts the exact-value part, as well as the wildcard part. Then it
numerates all the possible values of the wildcard part and com-

ines the result with the exact-value part. In this way, the com-

lexity is determined by the wildcard length of most rules, which

s generally low, since the majority of rules are exact rules or rules

ith small ranges. To enumerate the values of the wildcard po-

itions, another bit-level instruction — PDEP — is used to gener-

te different values. PDEP is the reverse of PEXT. PDEP scatters the

ower-order bits into positions specified in wild card _ pos _ encode,

nd has the same cost (3 cycles) as PEXT , therefore dramatically

ccelerates the procedure. 

. Evaluation 

.1. Evaluation methodology 

In this section, we compare the performance of BitCuts with

yperSplit, HyperCuts and EffiCuts. For BitCuts, HyperCuts and Ef-

Cuts, the parameters are set as BINT H = 8 and sp fac = 4 . For Ef-

Cuts, since its grouping technique is orthogonal to BitCuts, the

ffiCuts implementation in the evaluation only incorporates equi-

ense cutting. Since HyperSplit uses binary cutting without sp-

ac configuration, we set its BINT H = 8 . The rulesets generated by

lassBench [29] , and all types of rules (i.e., ACL, FW, IPC) are eval-
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Fig. 10. Decision-tree characteristic comparison on 1K rulesets. 

Fig. 11. Decision-tree characteristic comparison on 5K rulesets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Decision-tree characteristic comparison on 10K rulesets. 
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uated. To compare the performance on rulesets of different sizes,

rulesets of 1K, 5K and 10K rules are used for all three types. In

the following subsections, the characteristic of decision trees, the

preprocessing metrics and the online classification throughput are

evaluated and compared. 

7.2. Decision-tree characteristics 

We first compare the characteristics of the BitCuts decision

tree with other algorithms to verify whether the “bit-level cut-

ting” achieves better rule spread-out — i.e., whether the rules are

well-scattered among the child nodes. For all the decision trees,

we measure this at each non-leaf node using the ratio of the max-

imum child rule number to the parent rule number. A lower ra-

tio indicates that the node has a better rule spread-out. Finally,

the distribution of all the ratios is drawn as a box figure. Fig. 10

shows the distributions for four algorithms on the ACL1K, FW1K

and IPC1K rulesets. Figs. 11 and 12 show the results on 5K and 10K

rulesets. The lower, middle and upper bound of the box represent

the first quartile, median and third quartile of the values, respec-

tively. The figures depict the data points beyond dashed whiskers

as outliers, which are 1.5 × IQR (interquartile range) beyond the

quartiles. It can be observed that BitCuts achieves the best rule

spread-out among all the algorithms. In all cases, it achieves its

lowest value of 25th, median, and 75th value. Taking a look at

the bottom values, we see that HyperSplit, whose value is around
.5 for all the rulesets, does not achieves outstanding rule spread-

ut due to its use of binary cuts. For BitCuts, HyperCuts and Effi-

uts, we note that in all cases, BitCuts has the lowest bottom val-

es. Since BitCuts, HyperCuts and EffiCuts are configured with the

ame spfac , the results indicate that our proposed bit-level cutting

chieves the best rule spread-out given the same memory expan-

ion. 

.3. Memory accesses and memory space 

In order to reveal the speed and space of various algorithms,

ome metrics about the decision trees, including the number of

emory accesses required for tree traversing and memory size,

re evaluated. Particularly, the number of memory accesses along a

earch path is the depth of the leaf node plus the number of linear

ccesses corresponding to that leaf. 

verage-case memory accesses. As shown in Fig. 13 , BitCuts has the

mallest average memory accesses among all the algorithms. Over-

ll, the average memory accesses of BitCuts is about 42% that of

yperSplit, 59% that of HyperCuts, and 53% of EffiCuts. In most

ases, HyperSplit has the greatest average memory accesses, due

o its conservative choosing of cutting numbers. HyperCuts and Ef-

Cuts outperform HyperSplit due to their larger fanout in a single

ode, but their average memory accesses are still larger than that

f BitCuts, because the cutting of BitCuts is more efficient in terms

f rule separation. 

orst-case memory accesses. For worst case memory accesses, Bit-

uts is about 51% of HyperSplit, 54% of HyperCuts and 51% of Ef-

Cuts, as shown in Fig. 14 . For all the rulesets, the worst-case

emory accesses of BitCuts is below 21, indicating that BitCuts ef-

ectively reduces the worst memory accesses for various rulesets.

or all the other three algorithms, on the contrary, there are cases

here more than 35 accesses are required on large rulesets. 

emory size. From Fig. 15 we observe that BitCuts has achieved

ignificant improvement on memory size than HyperCuts and Ef-

Cuts. On average it consumes only 12% the memory of Hyper-

uts and 19% of EffiCuts. Recalling that BitCuts on average re-

uires 59% the memory accesses of HyperCuts and 52% that of

iffCuts, BitCuts outperforms HyperCuts and EffiCuts in both clas-

ification speed and memory consumption. Although BitCuts con-

umes nearly 2.8x the memory size of HyperSplit, BitCuts only

equires less than half of the memory accesses of HyperSplit. In

articular, the size is still smaller than 1MB for ACL10K, which is
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Fig. 13. Average memory accesses. 

Fig. 14. Worst memory accesses. 

Fig. 15. Memory usage. 
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mall enough to be accommodated in cache. For rulesets like IPC5K

nd IPC10K, BitCuts achieves the lowest memory consumption, due

o its efficient cutting method and the saving of non-leaf nodes.

itCuts thus achieves a reasonable trade-off between speed and

pace. 
s  

w  
.4. Sensitivity study 

Given a ruleset, the performance of BitCuts algorithm are de-

ermined by BitCuts parameters — BINTH and Spfac . Empirically,

he parameters are chosen through experiments, based on the re-

ulting memory access number and memory size. For instance, the

orst-case memory access number could be used to estimate the
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Fig. 16. Sensitivity Study of memory accesses and size. 
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lower bound of throughput. In addition, if the data structure is

small enough to load into faster memory hierarchy, such as L3/L2

cache, the decision-tree traversal could benefit from faster data

access in cache and accelerate the online classification. To pro-

vide the insight about the effect of parameters. A sensitivity study

based on ACL10K, FW10K and IPC10K rulesets are conducted. For

these experiments, BitCuts is ran on all three rulesets with BINTH

of 8, 16, 32 and Spfac of 2, 4 and 8, respectively. Results about
emory size and memory accesses (both average and worst ac-

esses) are presented. 

Fig. 16 a, c, and e show the average and worst memory accesses

n ACL10K, FW10K and IPC10K rulesets. The x-axis represents the

arameters of different runs, and y-axis shows the number of

emory accesses. It is observed that, as BINTH gets smaller and

pfac gets larger, both average and worst memory access number

ecomes lower. Particularly, reducing BINTH is effective to reduce



Z. Liu et al. / Computer Communications 109 (2017) 38–52 51 

Fig. 17. Average throughput. 
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he worst memory accesses, and therefore is helpful to provide de-

ermined worst-case classification speed. On the other hand, in-

reasing Spfac is able to lower the average memory accesses con-

tantly. 

Fig. 16 b, d and f show the memory size results on ACL10K

W10K and IPC 10K rulesets. The results show that both BINTH and

pfac have obvious impact the memory size. The memory grows

s BINTH decreases or Spfac increases. For BINTH, its impact on

emory size is greater on FW and IPC rulesets than that on ACL

uleset. Spfac, which controls the cutting number on all non-leaf

odes, manifests the same trend of memory impact across all rule-

ets. Given the same BINTH, the memory size grows sub-linearly as

he Spfac increases. 

.5. Online classification throughput 

The ruleset ACL10K is used to test the throughput of the

ecision-tree lookup. The testbed is set up on two HP Z228 work-

tations, each with a 4-core Intel Xeon Processor E3-1225 CPU,

0 GB memory, and an X710 NIC with two 10 Gbps ports. The

acket size of the testing traffic is 64 bytes. 

A traffic generator is developed to continuously generate and

eceives packets, and calculate the throughput accordingly. The

enerator runs in a mode wherein each flow only contains one

acket. Packets containing different headers are processed by the

lgorithms, and there is no continuous flow in the traffic. The dis-

ribution of the header values, which directly influences the mem-

ry access pattern, is the key factor in the testing. Some may sug-

ested that random headers could be an option. However, actual

esting on random traffic shows that all the algorithms perform

imilarly, and the deeper tree nodes are never touched, which is

he “favorable case” for all algorithms. Therefore, we decided to

est the “bad case” for all algorithms. The “bad case” testing traf-

c is composed of the headers matching each of the decision-tree

eaves. An extra tree-building is run to output the information of

ll the leaf nodes into a file. Then the traffic generator loads the file

o synthesize the testing traffic. As shown in Fig. 17 , DPDK-based

valuation shows that BitCuts achieves about 2.1 × the throughput

f HyperSplit, 2.0 × that of HyperCuts and 2.2 × that of EffiCuts.

itCuts is the only algorithm that achieves over 10 Gbps through-

ut with 3 cores, indicating that BitCuts is superior to the other

lgorithms for high-speed packet classification. 

. Discussion 

.1. Other algorithms using bit-level classification 

There are also other algorithms that use bit-level classifica-

ion. The Modular Packet Classification (MPC) [18] is the first al-

orithm to incorporate bit-level packet classification. A three-step

earch framework is proposed for online classification. The first
tep checks partial prefixes on multiple fields to index into a jump

able, where each table entry corresponds to a subset of rules and

oints to a decision tree. The decision tree is traversed by exam-

ning the bit position stored in each tree node. The classification

esorts to linear search when the number of matching rules falls

elow a threshold. However, the first step of prefix-based index-

ng does not adapt well to skewed rule distribution, and may in-

roduce considerable memory overhead. In addition, the decision

rees of MPC only choose a single bit at one node, which does not

ffectively reduce the length of the search path. 

D2BS [19] also selects discrete bit positions to divide the rules

nd construct a jump table, where each table entry points to a

lock of rules that correspond to the concatenated bit index. The

ules in the blocks are searched linearly. However, D2BS only in-

orporates single-step bit indexing, and does not build a decision

ree to recursively reduce the search scope. Typically, D2BS selects

6 – 18 bits at the first stage. Since all the bits selected are used

o divide the rules in one step, the bit number is limited due to its

arge memory overhead, and is still not sufficient to achieve rea-

onable rule separation. By contrast, BitCuts builds a multi-level

ecision tree; for each child node and its corresponding rules, the

lgorithm selects the most effective bits for segregating the rules.

herefore, BitCuts incorporates far more bits during classification

nd avoids selecting a large number of bits at a single node. 

.2. Memory consumption 

Although the memory consumption of BitCuts is higher than

hat of HyperSplit, the reduction of memory access makes BitCuts

aster than HyperSplit. And it achieves a great improvement upon

qui-sized cutting algorithms like HyperCuts. For scenarios where

emory consumption is critical, the rules can be separated into

everal subgroups, and use BitCuts to build decision trees for each.

rior works like EffiCuts [16] , SAX-PAC [25] and RFG [24] proposed

everal grouping techniques, and were able to reduce the memory

onsumption by a huge factor. 

. Conclusion and future work 

This paper proposes BitCuts, a decision-tree algorithm that per-

orms bit-level cutting. BitCuts achieves an optimized speed and

pace trade-off that, it obtains high classification speed and main-

ains reasonable memory consumption. The evaluations based on

ules from ClassBench show that BitCuts outperforms HyperCuts

nd EffiCuts in both speed and space. DPDK-based evaluations

emonstrate that BitCuts achieves about 2.0x – 2.2x the through-

ut of existing algorithms on large rulesets, and is the only al-

orithm that achieves over 10Gbps throughput with 3 cores. For

emory consumption, BitCuts has only 12% the memory consump-

ion of HyperCuts, 19% that of EffiCuts, and is comparable to Hy-

erSplit. Its memory size is less than 1 MB on the ACL10K ruleset. 
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BitCuts is a promising scheme to meet the increasing perfor-

mance requirements of packet classification. Future work includes

developing more advanced bit-selection algorithms to further re-

duce memory consumption, and developing heuristics that meet

hard memory limitations. Meanwhile, the bit-level separability de-

fined in this paper is capable of identifying effective bits and re-

dundant bits for classification. Adopting such bit-level information

for ruleset compressing is also an interesting research direction,

which may also benefit hardware solutions such as TCAM. 
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